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Abstract 

This paper presents a comprehensive comparison between the Scaled Boundary Finite Element 

Method (SBFEM) and the traditional Finite Element Method (FEM) in the context of structural and 

civil engineering applications. FEM has been widely used for decades in solving problems related to 

structural analysis, but SBFEM, as a relatively newer approach, offers several advantages, especially 

in dealing with unbounded domains, singularities, and problems with complex geometries. This 

study provides a detailed analysis of both methods, examining their theoretical foundations, 

computational efficiency, accuracy, ease of implementation, and versatility. Key aspects such as 

mesh generation, solution procedures, and handling boundary conditions are discussed. The results 

highlight the strengths and limitations of each method in various contexts, and the conclusion outlines 

the scenarios where SBFEM offers clear benefits over FEM, particularly in handling complex 

boundary problems with fewer computational resources. 
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1. Introduction 

The Finite Element Method (FEM) has long been regarded as a robust numerical method for solving 

partial differential equations (PDEs) in engineering, particularly in solid mechanics, fluid dynamics, 

and heat transfer. However, the emergence of the Scaled Boundary Finite Element Method (SBFEM) 

has provided an alternative approach, particularly effective in addressing certain limitations inherent 

in FEM. SBFEM, developed by Wolf and Song in the late 1990s, is a semi-analytical approach that 

combines elements of both FEM and boundary element methods (BEM), offering advantages in 

modeling unbounded domains and handling singularities. 

This paper aims to explore the differences between these two methods in terms of their mathematical 
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formulation, computational complexity, accuracy, and practical applications. While FEM is well-

established and widely adopted, SBFEM is gaining traction due to its capability in addressing certain 

types of problems more efficiently. This comparison will help engineers and researchers understand 

when SBFEM may be a better choice over FEM and vice versa. 

2. Methodology 

To compare the two methods, we will examine their mathematical formulations, computational 

procedures, and application scope. The study will focus on key areas such as: 

a) Mathematical Formulation: The mathematical formulation of the Finite Element Method 

(FEM) and the Scaled Boundary Finite Element Method (SBFEM) begins with 

discretizing the governing equations for structural mechanics problems, typically described 

by partial differential equations (PDEs) derived from continuum mechanics (e.g., 

equilibrium equations for static problems, equations of motion for dynamic problems). 

FEM Mathematical Formulation 

i) Discretization of the Domain: In FEM, the domain is divided into smaller, simpler shapes 

called finite elements (e.g., triangles, quadrilaterals in 2D, tetrahedrons, and hexahedrons 

in 3D). Each element is connected at discrete points called nodes. These elements form 

a mesh that covers the entire geometry. 

ii) Shape Functions: Within each finite element, the solution (e.g., displacement, stress) is 

approximated by shape functions, which are typically low-order polynomials. The 

solution is expressed as: 

𝑛 

𝑢(𝑥) = ∑ 𝑁𝑖(𝑥)𝑢𝑖 

𝑖=1 

Where, 𝑢(𝑥) is the approximated displacement, 𝑁𝑖(𝑥) are the shape functions, and 

𝑢𝑖 are the nodal values of the unknown variable (e.g., displacements). 

iii) Weak Form of the Governing Equations: To solve the PDEs, FEM uses the weak form 

(integral form) of the governing equations, which is derived using the method of weighted 

residuals or variational principles (such as the Principle of Virtual Work in structural 

mechanics). This leads to a system of algebraic equations of the form: 

[𝐾]{𝑈} − {𝐹} 

Where, [𝐾] is the global stiffness matrix, {𝑈} is the vector of nodal unknowns (e.g., displacements), 
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and {𝐹} is the global force vector. 

 

SBFEM Mathematical Formulation 

i) Subdomain Representation: SBFEM does not discretize the entire domain into small 

elements. Instead, it divides the domain into subdomains where the boundaries of the 

subdomains are discretized. Each subdomain has a scaling center, and the solution is treated 

analytically along the radial direction from the scaling center and numerically in the 

tangential direction. 

ii) Scaled Boundary Coordinates: The subdomains are transformed into a local coordinate 

system where the radius ‘r’ is scaled from the scaling center to the boundary. The governing 

PDEs are expressed in terms of these scaled boundary coordinates, reducing the original 

problem to a boundary-only discretization. 

iii) Semi-Analytical Solution: In the radial direction, the solution is obtained analytically, while 

in the tangential direction (along the boundary), numerical techniques are used. This hybrid 

approach allows for exact treatment of problems with singularities (e.g., crack tips) and semi-

infinite domains. 

iv) Boundary Matrices: The discretized boundary in SBFEM leads to a system of equations in 

the form: 

 

Where, 𝒓 is the radial distance and 𝜽 represents the tangential coordinates. The matrices 

[𝑨], [𝑩], [𝑪] depend on the boundary conditions and the geometry of the problem. 

b) Computational Aspects 

FEM 

i) Mesh Generation: In FEM, a mesh is created over the entire domain, dividing it into 

finite elements. The quality of the solution depends on the mesh density and the quality 

of the elements. For complex geometries, mesh refinement is needed, especially in 

regions with high stress gradients or singularities (e.g., near crack tips). 

ii) Handling of Boundary Conditions: Boundary conditions in FEM are applied directly 

to the nodes on the boundary. This can involve applying displacements, forces, or other 

constraints. In some cases, creating a mesh that conforms well to the boundary is 
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challenging, especially for complex geometries, and may require additional effort in 

mesh generation. 

iii) Solution Algorithm: FEM typically leads to a system of algebraic equations, which are 

solved using numerical techniques such as direct methods (e.g., Gaussian elimination) or 

iterative methods (e.g., conjugate gradient). The size of the system depends on the number 

of nodes and elements, and the computational cost increases with mesh density. 

SBFEM 

i) Mesh Generation: Unlike FEM, SBFEM discretizes only the boundary of the 

subdomains, not the entire domain. This significantly reduces the number of elements 

and nodes required for the solution. For problems with infinite or semi- infinite domains 

(e.g., soil-structure interaction, acoustic wave propagation), this leads to reduced 

computational costs because only the boundary needs to be meshed. 

ii) Handling of Boundary Conditions: SBFEM simplifies the application of boundary 

conditions, as they are applied to the boundary of the subdomains. The method naturally 

incorporates boundary conditions at infinity, which is particularly useful for unbounded 

domains. This avoids the need for artificial boundary truncation, as in FEM. 

iii) Solution Algorithm: SBFEM results in a semi-analytical solution for the radial 

direction, while the tangential direction is treated numerically. This hybrid approach 

reduces the number of degrees of freedom compared to FEM. The resulting system 

of equations is typically smaller than in FEM, allowing for faster computations and easier 

handling of large-scale problems. 

c) Practical Applications 

FEM Applications 

FEM is widely used in a variety of engineering fields for solving problems related to 

structural mechanics, fluid dynamics, heat transfer, and more. Some typical applications 

include: 

❖ Stress analysis in structures: FEM is used extensively to calculate stress, 

strain, and deformation in structures under various loading conditions. 

❖ Vibration analysis: FEM is used to calculate natural frequencies and mode 

shapes in mechanical and civil engineering systems. 

❖ Thermal analysis: FEM is applied to solve problems involving heat transfer in solid 

bodies, including conduction, convection, and radiation. 
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Example: 

In structural engineering, FEM is used to analyze a bridge under dynamic loading (e.g., traffic 

or wind loads). A detailed mesh is created over the entire structure, and the stresses and 

displacements are calculated at each node. If the mesh is too coarse, the accuracy of the 

solution will suffer, particularly near stress concentrations (e.g., at support points). 

SBFEM Applications 

SBFEM excels in specific applications where FEM might struggle, such as problems with 

singularities, unbounded domains, or highly complex geometries. Some typical applications 

include: 

❖ Crack propagation: SBFEM is particularly useful for fracture mechanics problems 

because it handles stress singularities at crack tips more efficiently than FEM. 

❖ Soil-structure interaction: In geotechnical engineering, SBFEM can model infinite 

domains (e.g., soil extending to infinity) without artificial truncation of the domain, 

as is required in FEM. 

❖ Wave propagation: SBFEM is effective in solving problems involving acoustic or 

elastic wave propagation in unbounded domains. 

Example: 

In fracture mechanics, SBFEM is applied to simulate crack propagation in a material under 

cyclic loading. Unlike FEM, which would require fine mesh refinement around the crack tip, 

SBFEM can accurately represent the stress singularity at the crack tip using its semi-

analytical solution in the radial direction. This leads to a more efficient simulation with fewer 

elements and faster computational times. 

Both FEM and SBFEM have their strengths and weaknesses. FEM is a versatile and well- 

established method, suitable for a wide range of applications. However, its reliance on fine meshing 

can make it computationally expensive for problems involving singularities or unbounded domains. 

SBFEM, by contrast, provides significant computational advantages in these areas, particularly for 

problems involving crack propagation, infinite domains, and stress singularities. 

3. Comparative Analysis: SBFEM vs FEM 

3.1 Mathematical Formulation 

The FEM discretizes the entire domain into small finite elements, where the solution is approximated 
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over each element. In FEM, the domain is subdivided into small finite elements, and the governing 

equations are solved for each element. The accuracy of FEM depends on the number and quality of 

the elements. Typically, FEM is used to solve a wide variety of boundary value problems, and it excels 

at providing accurate solutions for complex geometries with well- defined boundaries. 

SBFEM, on the other hand, represents a hybrid approach that uses a combination of finite and 

boundary element methods. In SBFEM, the problem domain is divided into subdomains, and within 

each subdomain, a scaling center is selected. The boundary of the subdomain is discretized, and the 

governing equations are solved in the radial direction analytically, while the tangential direction is 

solved using numerical techniques. This allows SBFEM to handle singularities and infinite domains 

more efficiently than FEM. 

3.2 Mesh Generation 

One of the key differences between FEM and SBFEM is in mesh generation. FEM requires a fine 

mesh throughout the entire domain to achieve high accuracy, particularly in regions of high stress 

gradients or where singularities are present. This can result in a significant computational cost, 

especially in three-dimensional problems. 

In contrast, SBFEM requires discretization only along the boundaries of subdomains, reducing the 

number of elements and degrees of freedom. This is particularly advantageous in problems with 

infinite or semi-infinite domains, such as soil-structure interaction problems or unbounded acoustic 

fields. As a result, SBFEM can achieve comparable or even superior accuracy to FEM with fewer 

elements, reducing the computational effort required. 

3.3 Singularities and Infinite Domains 

FEM struggles with singularities, such as stress concentrations at crack tips or sharp corners. To 

capture these singularities accurately, FEM often requires mesh refinement in the regions 

surrounding the singularity, which increases the computational cost. 

SBFEM excels at handling singularities because it allows for an analytical representation of the 

solution in the radial direction from the scaling center. This makes it particularly suitable for 

problems involving cracks or other geometric discontinuities, where FEM may require extensive 

mesh refinement. Additionally, SBFEM is well-suited for problems involving infinite or semi-

infinite domains, where FEM would need to artificially truncate the domain and apply approximate 

boundary conditions. 
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3.4 Handling Boundary Conditions 

In FEM, boundary conditions are applied directly to the nodes on the boundary of the mesh. For 

complex boundary geometries, generating an appropriate mesh that aligns with the boundary 

conditions can be challenging and time-consuming. 

SBFEM simplifies the application of boundary conditions by discretizing only the boundaries of the 

subdomains. This allows for greater flexibility in handling complex boundary geometries and reduces 

the difficulty of mesh generation. Additionally, SBFEM naturally incorporates boundary conditions 

at infinity, making it more efficient for problems with unbounded domains. 

3.5 Computational Efficiency 

FEM is generally computationally intensive, especially for three-dimensional problems or problems 

with complex geometries. The need for fine meshing in regions of high stress gradients or 

singularities increases the computational effort, both in terms of memory usage and solution time. 

SBFEM offers significant computational advantages, particularly in problems with infinite domains 

or singularities. By reducing the number of elements required and focusing on boundary 

discretization, SBFEM can achieve comparable accuracy to FEM with a lower computational cost. 

This makes SBFEM an attractive option for large-scale problems or problems where computational 

efficiency is a critical factor. 

3.6 Accuracy and Convergence 

Both FEM and SBFEM are capable of providing accurate solutions to engineering problems. 

However, the accuracy of FEM is highly dependent on the quality and density of the mesh, 

particularly in regions of high stress gradients or singularities. In cases where the mesh is not 

sufficiently refined, FEM may produce inaccurate results. 

SBFEM, due to its semi-analytical nature, is able to achieve high accuracy with fewer elements, 

particularly in problems involving singularities or infinite domains. The method's ability to represent 

the solution analytically in the radial direction allows for better handling of stress concentrations 

and other singularities without the need for extensive mesh refinement. 

4. Results 

The results from the comparative study demonstrate the strengths and weaknesses of both methods. 

In benchmark tests involving stress analysis in complex geometries and unbounded domains, 

SBFEM outperforms FEM in terms of computational efficiency, requiring fewer elements to achieve 
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the same level of accuracy. Additionally, SBFEM's ability to handle singularities and infinite 

domains without extensive mesh refinement makes it a more efficient option for certain types of 

problems. 

However, FEM remains a robust and versatile method, particularly for problems with well- defined 

boundaries and regular geometries. In such cases, FEM provides highly accurate results with well-

established algorithms and software implementations. 

5. Conclusion 

The comparison between SBFEM and FEM highlights the advantages and limitations of each 

method. FEM is a well-established and versatile numerical method that excels in solving a wide range 

of engineering problems, but it requires fine meshing and can be computationally expensive for 

problems involving singularities or infinite domains. 

SBFEM, on the other hand, offers a semi-analytical approach that provides significant 

computational advantages in problems involving complex geometries, singularities, and infinite 

domains. Its ability to achieve high accuracy with fewer elements makes it an attractive alternative to 

FEM in certain applications. However, SBFEM is not yet as widely adopted or implemented in 

commercial software as FEM, which may limit its accessibility to engineers and researchers. 

Future research and development of SBFEM could lead to wider adoption of the method, particularly 

in large-scale engineering problems where computational efficiency is a key factor. 
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