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Subject : Artificial Intelligence 
Abstract 

In recent years, advances in agricultural operations have been made possible by the deployment 

of machine learning (ML) and artificial intelligence (AI) approaches. This shift has led to an 

increase in the visibility of crop management and yield optimisation in recent years. This study 

looks into the application of hybrid machine learning models to extract wheat crop characteristics 

from hyperspectral photos captured by unmanned aerial vehicles (UAVs). For this experiment, the 

ARTMO software package is employed. The workflow presented includes field testing, using 

unmanned aerial vehicles (UAVs) to take pictures, and using advanced data processing techniques 

like principal component analysis (PCA), Gaussian process regression (GPR), and PROSAIL 

simulations. NRMSE values for LAI and CCC are relatively low at 9.7% and 15.9%, respectively. 

These figures show that overall performance is excellent. These numbers suggest that the 

uncertainties have significantly decreased and that the retrieval accuracy was fairly good. There 

is an additional improvement in the model's precision as a result of the addition of non-vegetation 

spectra to the dataset optimised for AL. This approach provides a scalable, quantitative, and real-

time solution for vegetative product surveillance. This approach is what has allowed for this 

important contribution to the field of precision agriculture. 

Keywords: Ai/Ml Applications, Hybrid Machine Learning Models, Wheat Crop, Uav-Borne 

Hyperspectral Images. 

1. INTRODUCTION  

Lately, the coordination of artificial intelligence (AI) and machine learning (ML) procedures has 

reformed horticultural practices, especially with regards to crop the executives and yield 

improvement. One promising application involves the use of unmanned aerial vehicles (UAVs) 

equipped with hyperspectral imaging technology to capture detailed data on wheat crop traits. 
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These photos give extensive, high-resolution spectrum information that standard approaches 

cannot match, allowing the extraction of exact agricultural metrics like chlorophyll, leaf area 

index, and nutrient levels. 

 

Figure 1: Applications of AI in Agriculture  

Researchers may analyse and interpret these complex datasets using hybrid machine learning 

models that combine deep learning algorithms with statistical methods to give farmers insights 

into crop productivity and sustainability. 

1.1.Wheat Crop Traits and Their Significance 

Wheat, a staple crop worldwide, exhibits diverse traits such as leaf chlorophyll content, biomass 

accumulation, and nitrogen status, which are crucial indicators of crop health and productivity. 

Monitoring these traits throughout the growing season is essential for optimizing agricultural 

practices, including irrigation scheduling, fertilizer application, and disease management. 

Traditional methods of trait assessment, such as manual sampling and laboratory analysis, are 

labor-intensive, time-consuming, and often provide limited spatial coverage. 

1.2.Objectives  

The core objectives of the study are as follows:  

1. To retrieve wheat crop traits (LAI and CCC) from UAV-borne hyperspectral images using 

hybrid machine learning models. 
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2. To implement a workflow with UAV imaging, PROSAIL simulations, GPR, and PCA for 

precise wheat crop monitoring. 

3. To enhance trait retrieval accuracy by integrating non-vegetation spectra into the AL-optimized 

dataset. 

2. LITERATURE REVIEW  

Behera et al. (2010) Using the LAI-2000 Plant Canopy Analyzer, the study estimates Jatropha 

curcas leaf area index (LAI) indirectly. The canopy light transmittance method is essential for 

agricultural canopy structure and function assessment. The researchers used it to estimate LAI 

non-destructively, showing how technology-driven approaches can improve agriculture and 

forestry research precision and efficiency. 

Francone et al. (2014) The Ceptometer and Pocket LAI Smart App estimated LAI differently for 

canopies with varying structures. The data suggest canopy design influences LAI measurements, 

emphasizing the necessity for canopy-specific methods. Agronomic and ecological LAI 

estimations may be more accurate and useful. The research optimizes LAI measurement for 

different canopy topologies and improves agricultural management. 

Gonsamo and Pellikka (2008) Researchers corrected canopy LAI slope effects with 

hemispherical photography. The study indicated significant slope effects in LAI estimates, 

requiring adjustment. Statistics indicate that LAI estimate should employ topography to better 

ecological evaluations and management. The research improves hemispherical photography for 

varied environments, enabling ecological studies and conservation. 

Liang et al. (2020) Researchers estimated agricultural Leaf Area Index using spectral feature 

extraction and hybrid inversion. Due to its accuracy, remote sensing can improve agricultural 

monitoring and management. This work improves LAI calculation methods to optimise 

agricultural production evaluations and resource management. Remote sensing aids sustainable 

agriculture and environmental protection. 

3. APPLICATIONS OF AI/ ML IN AGRICULTURE 

A portion of the AI/ML based applications in agriculture area are -  

3.1.Yield prediction 
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Machine learning methods estimate crop yield using remote sensing. The majority use Artificial 

Neural Networks (ANN), then Convolutional Ones. Regularizing Bayes BP, SVR, ELR, RFR, and 

PLSR operate well. Red edge, canopy chlorophyll, and absorption ratio indices predict crop output. 

For efficient crop management, ML models with limited training data must estimate multi-stage 

crop production promptly.  

3.2.Pest and diseases detection 

Preventing output losses requires early crop disease identification. Accurate estimates require 

machine and deep learning. MLR models distinguished Maize Dwarf Mosaic Virus, wheat 

Powdery Mildew Disease, and Kiwifruit Decline Syndrome utilizing UAV information. These 

findings enable smart farming by recognising diseased crops, reducing pesticide and chemical 

consumption, and preserving crop quality. Figure demonstrates major deep and machine learning 

models. 

3.3.Weed detection 

Pests like weeds reduce crop yield and productivity. Early weed identification in farms is better 

with ML/DL. Drone, robot, and digital camera RGB images are processed using these algorithms. 

VGGNet performed worst, whereas SVM and CNN achieved 99% accuracy. This method 

processes RGB photos from drones, robotics, and digital cameras.  

3.4.Soil health management 

Food sustainability requires digital soil planning and shrewd supplement expectation. ML 

strategies like arbitrary woodland and profound learning beat traditional models for soil 

supplement expectation. Top soil nutrient prediction machine learning methods are compared. 
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Figure 2: An illustration of the top 12 machine learning models for soil prediction 

3.5.Crop quality management 

Detecting advances and machine learning algorithms to monitor crop nitrogen and chlorophyll 

condition is crucial. Radiative exchange methods and machine learning have been combined to 

consolidate SWIR ghastly hyperspectral information. Using hybrid models, especially radiative 

exchange models with Gaussian cycle relapse, these limits have been recovered quickly and 

precisely. 

 

Figure 3: N content estimation using several techniques 

3.6.Smart irrigation 

The proposed machine learning-based water system design incorporates information from 

different sources, including UAV and satellite-caught information, soil, and climate data, into a 
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cloud server. This empowers shrewd water system planning, forecasts, and proposals. The 

architecture recommends the use of supervised, unsupervised, reinforcement, and federated 

learning models for precise and smart field management.  

3.7.Livestock Management 

Livestock the board includes disease location, immunization, creation the executives, tracking, and 

wellbeing checking. These models show the most elevated exactness of more than close to 100% 

in steers recognizable proof, while profound learning models like ResNet, Origin, DenseNet, and 

NasNet additionally accomplish more than close to 100% precision. 

4. METHODOLOGY  

The block chart of the procedure utilized for the proposed approach is shown. The main advances 

engaged with the workflow are (I) field trial and error, UAV picture procurement, and pre-

processing; (ii) PROSAIL reenactments and model assessment; (iii) Gaussian process regression 

(GPR); (iv) dimensionality decrease utilizing principal component analysis (PCA); and (v) 

dynamic learning techniques and field check. Each step is explained exhaustively in the resulting 

segments. 

 

Figure 4: Block schematic of the study's methodology 
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The Study concentrated on an exploratory wheat crop at ICAR-IARI 228 meters above ocean level. 

The field has three replications of fifteen plots with five nitrogen grades and three water system 

systems. DMSO was utilized to anticipate agrarian yield and LAI-2000 plant covering analyzer to 

gauge LAI. The 21-m-high hyperspectral image has 278 400-1000 nm bands. UgCS Mission 

planning software designed the mission route, and Headwall Spectral View and ENVI analysed 

the gained hypercube. 

4.1.Model Evaluation and Selection of GPR  

A study assessed eight multivariate models for assessing LAI and CCC involving PCA as a 

dimensionality decrease technique. GPR beat any remaining models in foreseeing LAI with the 

most noteworthy R2 worth of 0.887, while KRR was appropriate for anticipating CCC with a R2 

worth of 0.8889. MAE values for LAI and CCC were 0.128 and 0.127, separately, while RMSE 

values were 0.254 and 0.135. The least qualities for assessing LAI and CCC were 1.857% and 

0.544%, separately. Both GPR and KRR created more exact and strong outcomes in assessing crop 

traits. 

Table 1: Evaluation of MLRA models' accuracy in obtaining LAI and CCC 

S. No. Model MLRA MAE RMSE RRMSE 

(%) 

NRMSE 

(%) 

LAI  

1  GPR    0.128 0.254 3.887 1.857 0.887 

2  KRR    0.225 0.264 5.176 2.195 0.006 

3  NN     0.230 0.343 7.261 3.264 0.099 

4  LS     0.290 0.358 7.656 3.466 0.098 

5  ELM    0.290 0.432 9.510 4.468 0.089 

6  BaT    0.329 0.468 10.570 4.965 0.087 

7  BoT    0.414 0.524 11.944 5.715 0.074 

8  SVR    0.445 0.559 12.903 6.207 0.068 

CCC  

1  KRR    0.127 0.135 2.673 0.544 0.8889 

2  GPR    0.142 0.154 3.867 0.857 1.000 

3  NN     0.142 0.160 4.373 1.015 1.000 

4  LS     0.149 0.160 4.403 1.023 1.000 

5  ELM    0.153 0.174 5.226 2.25 0.999 

6  SVR    0.186 0.104 7.110 2.710 0.996 
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7  BaT    0.179 0.210 8.216 2.080 0.996 

8  BoT    0.240 0.287 12.632 4.203 0.991 

The study shows smooth convergence and the usage of Non-Related Mean Square Error 

(NRRMSE) over R2 for LAI and CCC retrieval using Artificial Neural Network (ANN) methods. 

Validating with the field dataset shows that adding fresh samples to each AL iteration decreases 

RMSE and increases R2. With a few samples, the GPR model performed best, achieving 97 and 

119 for LAI and CCC. For LAI, RSAL outperformed other AL methods, whereas EBD excelled 

for CCC. Low sampling size may cause convergence due to a small number of training data points. 

 

Figure 5 (a): NRMSE (%) is shown graphically for a number of trait estimates made using 

various AL techniques. (A) The number of samples is indicated by LAI# samples 

 

Figure 5 (b): NRMSE (%) is shown graphically for a number of trait estimates made using 

various AL techniques.  (b) CCC. # samples indicates how many samples there are 

4.2.Retrieval of LAI and CCC  
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Preprocessed UAV hyperspectral images was used to calculate and estimate uncertainty using final 

GPR models. CV, LAI, and CCC retrieval maps were shown. Experimental plots with low LAI 

and CCC values exhibited red pixels, showing pixel-wise volatility. The plots revealed realistic 

and appropriate spatial variability with maximum and minimum values. The estimated maps 

showed no zero or almost zero values, indicating that there were no non-vegetated areas, despite 

the fact that the GPR models were trained with non-vegetation spectra and trait values set to zero. 

5. RESULTS  

5.1. Performance and evaluation criteria (including KPIs) 

The GPR models' 9.7% and 15.9% NRMSE values after field check demonstrate great recovery 

precision and more modest planning uncertainties for LAI and CCC. ARTMO, a free programming 

device, is utilized to recover wheat crop biophysical qualities from UAV datasets using a refined 

kernel-based and adaptable hybrid procedure.  

Table 2 (a): Model Performance Metrics for LAI Prediction 

Parameter LAI 

NRMSE 8.58% 

RMSE 0.735% 

MAE 0.481% 

R² 0.998% 

Improved NRMSE 9.7% (from 17.9%) 

 

 

Figure 6 (a): Graphical presentation of the Model Performance Metrics for LAI Prediction 
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Table 2 (b): Model Performance Metrics for CCC Prediction 

Parameter CCC 

NRMSE 15.95% 

RMSE 0.668% 

MAE 0.423% 

R² 0.767% 

Improved NRMSE 15.9 % (from 19.4%) 

 

 

Figure 6 (b): Graphical presentation of the Model Performance Metrics for CCC Prediction 

GPR models for LAI and CCC recovery have RMSEs of 0.735 and 0.668. LAI and CCC have 

MAE upsides of 0.481 and 0.423, individually, and R2 upsides of 0.998 and 0.767. NRMSE 

upsides of 8.589% and 15.953% for LAI and CCC recovery are the most basic measurable 

elements. NRMSE further developed essentially subsequent to adding nonvegetation spectra to the 

AL-upgraded dataset and retraining. From 17.9 to 9.7%, LAI NRMSE improved, and 19.4 to 

15.9%, CCC diminished. Five uncovered soil or non-vegetation spectra (10% of in situ 

estimations) were added to the AL-advanced dataset before crop trait approval. 

6. CONCLUSION  

AI and ML can upset crop the board and yield enhancement in agriculture. This study shows how 

hybrid machine learning models can recover wheat crop ascribes from UAV-borne hyperspectral 

pictures utilizing ARTMO programming. Field tests, UAV picture gathering, and high-level 

information processing strategies including PROSAIL reenactments, Gaussian process regression 
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(GPR), and PCA are utilized. Brilliant recovery exactness and diminished uncertainties were 

shown by low normalized root mean square error (NRMSE) upsides of 9.7% for leaf area index 

(LAI) and 15.9% for canopy chlorophyll content (CCC). The dynamic learning-upgraded dataset 

including non-vegetation range works on model accuracy, making vegetation item observing 

adaptable, quantitative, and constant. This strategy further develops accuracy agriculture by 

checking crop wellbeing precisely and productively. 
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