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ABSTRACT:  

UAVs outfitted with remote sensing technologies present valuable options for detecting crop 

diseases in precision agriculture. reviewed the application of ML and DL techniques in conjunction 

with UAV-based remote sensing to improve the accuracy of crop disease identification. UAVs offer 

versatile coverage of agricultural fields and capture high-resolution images, which aid in the automated 

detection of diseases across various types of crops. UAVs gather data on crop features to assess disease 

levels by utilizing RGB, multispectral, and hyperspectral sensors. Earlier research has focused on using 

vegetation indices and extracting data at the plot level for disease evaluation. Recent advancements in 

UAV technology and sensor capabilities have made it possible to use ML & DL algorithms for more 

precise illness estimation. This paper assesses the benefits and drawbacks of current methods and 

highlights the significance of a thorough investigation of ML and DL techniques for agricultural 

disease detection with unmanned aerial vehicles (UAVs). The combination of UAV-based remote 

sensing with sophisticated data-driven techniques has the potential to significantly improve early 

disease detection, assist farmers in making timely decisions, and minimize yield losses in precision 

agriculture. 

Keywords: UAV, Remote sensing, crop disease detection, machine learning, deep learning, 

precision agriculture, Unmanned Aerial Vehicle, Disease estimation, vegetation indices, plant 

phenotyping. 
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1. Introduction 

Environmental stresses that reduce crop productivity are common and can be divided into two 

categories: biotic (such as pests and diseases like fungi, bacteria, and nematodes) and abiotic (such as 

drought, floods, and extremely high temperatures) causes [1]. Crop scouting has historically involved 

farm workers manually examining disease indicators, frequently with assistance from a plant 

pathologist or crop disease specialist [2]. Because it necessitates pathogen isolation, microscopy, and 

symptom observation, this approach takes time [3, 4]. UAVs, the Internet of Things (IoT), and artificial 

intelligence (AI) are examples of cutting-edge technology that present viable, easier-to-use, and 

quicker alternatives for disease detection [5]. Early diagnosis is essential for averting yield losses and 

inspiring researchers in precision agriculture to create novel, affordable remedies [6–8]. This difficulty 

can be successfully addressed by a multidisciplinary approach that makes use of drones, AI 

approaches, and remote sensing [9]. 

By using electromagnetic (EM) radiation as a transport of information, remote sensing offers a 

reliable and objective approach for measuring and monitoring illness [6]. The electromagnetic 

spectrum includes radio waves and gamma rays. Different spectrum sections are captured by sensors 

including RGB (visible), multispectral, and hyperspectral [10,11], with higher costs often 

corresponding to increased sensing ability [12]. Utilizing unmanned aerial vehicles (UAVs), remote 

sensing has been applied to precision agriculture (PA) applications, including disease identification 

[7], plant health monitoring [13], and yield estimations [14]. Because of their adaptable field coverage 

and capacity to obtain high-resolution images closer to plants than other airborne techniques, 

unmanned aerial vehicles (UAVs) are preferred in PA research [15]. With the help of these high-

resolution photos, diseases like tomato spot wilt disease [17], peanut leaf wilt [S], and yellow rust in 

wheat [16] can be automatically detected in a variety of crops. 

RGB, multispectral, and hyperspectral sensors have been utilized in numerous examinations to 

aggregate plants utilizing unmanned aerial vehicles. To predict yield and stress levels, these sensors 

gather data on crop attributes like covering thickness, biomass, and level. Furthermore, a couple of 

studies have confirmed the accuracy of UAV-based remote sensing in assessing disease. These 

investigations often extract plot-level data by counting pixels under a threshold to gauge sickness 

scores, or by working out the average worth of a vegetation index. For example, Patrick et al. [17] 

assessed tomato spot wilt sickness in peanuts utilizing multispectral picture derived indices like NDRE 

and NDVI. Utilizing a MicaSense RedEdge camera, they took multispectral pictures and applied a 
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threshold to recognize healthy and unhealthy pixels. In the linear regression analysis, the disease 

percentage was the target variable and the number of pixels beneath or over this threshold was the 

predictor variable. However, the computerization of this technique is restricted by the need to 

physically set the best criteria for every vegetation index. Moreover, the utilization of the technique is 

convoluted by the way that certain vegetation indicators miss the mark on characterized threshold for 

differentiating among healthy and unhealthy plots. 

Advances in UAV platforms and sensors, which have made image collection more frequent and 

inexpensive, have enhanced the accuracy of agricultural disease forecasting via predictive tactics, such 

as classical (ML) and (DL) approaches [19]. Hyperspectral remote sensing was used by Abdulridha et 

al. [20] to differentiate tomato disease using (VIs) and machine learning methods such as (ANN). 

Additionally, it was suggested to use machine learning and multispectral UAV images to identify 

wheat yellow rust [21]. Using a (RF) classifier trained at the pixel level, this method achieved an 

accuracy of 89.3% in classifying image pixels as either badly polluted, moderately infected, or healthy. 

After carefully examining 100 publications on crop stress monitoring with unmanned aerial 

vehicles, Barbedo et al. [22] synthesized numerous studies on UAVs and sensors for plant stress 

monitoring. While the study offered suggestions for future research and tackled current issues, it did 

not fully address cutting-edge data-driven techniques like (ML) and (DL) for crop security with 

(UAVs). 

Neupane et al.'s investigation [23] examined the sensors and techniques for employing UAV 

technology to automatically monitor and identify agricultural diseases. A thorough explanation of the 

ML and DL approaches and their assessment was absent from the survey, which instead focused on 

the benefits of using different UAVs and cameras, including RGB, multispectral, and hyperspectral, 

for precise crop disease identification. 

The use of deep learning (DL) methods and unmanned aerial vehicle (UAV) footage for early 

disease diagnosis in agriculture was investigated by Bouguettaya et al. [24]. Still missing were details 

like a taxonomy for crop disease identification and comparisons of other UAV-based methods' 

effectiveness, as well as any discussion of competing strategies like traditional machine learning or 

techniques based on vegetation indices. Despite Bouguettaya et al.'s best efforts, a comprehensive 

taxonomy and literature review remain absent. [24] recently examined and compared the effectiveness 

of several deep learning approaches for exploiting UAV photos to detect crop diseases. Table 1 

illustrates the key components, target areas, and limits of the most pertinent surveys that are currently 
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available. 

Table 1. Synopsis of Current Survey Research on Crop Disease Estimation Using UAV Images and 

Precision Agriculture 

Re

f 

Focused 

Area 

Features and Highlights Laminations and Gaps 

[22

] 

Monitoring 

plant stress 

● Sensors and UAVs were 

discussed. 

● A list of difficulties and 

suggestions for UAVs in 

precision agriculture was 

provided. 

● . 

● Conventional machine learning 

methods were not addressed. 

● Deep learning methods were not 

included. 

[23

] 

Detecting 

crop diseases 

with UAVs 

● Covered a range of sensors 

and UAV types. 

● Featured various techniques 

for processing data. 

● A brief discussion of deep 

learning techniques 

● . 

● The survey did not focus on ML 

and DL methods. 

● It did not cover performance 

comparisons between 

conventional ML and DL 

methods. 

[24

] 

Early 

identification 

of crop 

diseases 

● Gave a summary on 

precision agriculture and 

UAVs.  

discussed some techniques 

for deep learning  

 

● The survey did not include a 

taxonomy of crop disease 

detection. 

● It was short and omitted any 

discussion of machine learning 

or other techniques. 

[26

] 

UAVs for 

detecting 

plant and 

crop diseases 

●  A range of remote sensing 

and UAV methods. 

● The ability of deep learning 

to detect agricultural 

diseases effectively. 

● Obstacles and restrictions 

● There was no taxonomy of crop 

diseases provided. 

● The performance comparison of 

different machine learning and 

deep learning algorithms was not 

discussed. 



 

450 | P a g e  
 

in using UAVs to detect 

agricultural diseases 

● The literature was not the subject 

of a meta-analysis. 

[9] UAVs in 

precision 

agriculture 

● Hyperspectral sensor 

overview. 

● The overall method for 

detecting crop diseases 

using hyperspectral 

imaging. 

● Crop disease detection 

using deep learning 

techniques 

● It was not discussed how to use 

machine learning techniques. 

● No discussion was held 

regarding a taxonomy of crop 

diseases. 

● It did not address recent 

developments in deep learning 

techniques. 

[27

] 

Aerial 

hyperspectra

l imaging for 

crop disease 

detection 

● Hyperspectral sensor 

overview. 

● The overall method for 

detecting crop diseases 

using hyperspectral 

imaging. 

● Deep learning methods for 

identifying agricultural 

diseases 

 

● No mention of machine learning 

techniques was made. 

● There was no discussion of a 

taxonomy of crop diseases. 

● The most recent developments in 

deep learning techniques were 

overlooked.  

[28

] 

Thermal 

UAV 

imaging for 

precision 

agriculture 

● Generally, tasks related to 

precision agriculture were 

the main focus. 

● Using thermal photography 

was one of the features 

● Deep learning and machine 

learning techniques were not 

discussed. 

● No taxonomy system was 

created. 

 

This study addresses the current holes by providing a point by point scientific classification for 

assessing crop diseases utilizing UAV imagery. The principal contributions of this study are as per the 

following. 

●  Highlighting potential improvements to agricultural disease detection using various UAV 
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platforms and sensors. 

● Presenting a taxonomy for estimating agricultural diseases and delineating the main procedures 

for remote sensing pipelines utilizing UAVs. 

● An examination and comparison of the practicality of deep learning (DL) and traditional 

machine learning methods for the identification of agricultural illnesses using information 

obtained by unmanned aerial vehicles (UAVs). 

● Performing a meta-analysis of the literature to identify trends in the area and recommend 

directions for further research. 

●  A summary of the challenges, opportunities, and areas that require further study in UAV-based 

remote sensing for agricultural disease detection 

The rest of this essay is structured as follows: Section 2 outlines the methodical process for locating 

pertinent research articles. Section 3 provides background information on remote sensing, vegetation 

indices, and ML/DL to facilitate the reader’s understanding. In Section 4, we can see the proposed 

taxonomy for identifying crop diseases using UAV images. The results of the survey data synthesis 

and meta-analysis are presented in Section 5. In Section 6, we draw conclusions and offer 

recommendations for future research. 

2. The Survey's Methodology 

We tried to determine current research holes and explore the conceivable outcomes of machine 

learning and deep learning techniques in agricultural disease ID utilizing (UAV) remote sensing. To 

gather and incorporate research articles pertinent to the concerns of our review, we carried out a 

methodical review of the literature utilizing laid out procedures. PRISMA criteria [29] were continued 

in this review, and the purposeful strategy displayed in Figure 1 was used to track down relevant 

distributions. 
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Figure 1. A methodical approach was utilized to obtain publications for the purpose of 

systematic review. 

The following research questions served as our guide for creating this questionnaire: 

RQ1: Which UAV systems and sensors are best suited to identify agricultural disease? This 

inquiry aims to determine which sensors—such as RGB, multispectral, and hyperspectral sensors—

are most effective at detecting agricultural diseases when employed in various (UAVs). 

 RQ2: Which crop diseases have been investigated by data-driven approaches, such as (DL) 

and traditional (ML), and UAV-based remote sensing? The purpose of this question is to list the 

agricultural illnesses that are effectively detected by ML and DL approaches and are caused by fungi, 

bacteria, insect pests, and viruses. 

RQ3: Based on statistics, which techniques are the most effective and precise for employing 

UAVs to identify crop diseases? This question, which evaluates the effectiveness of several data-

driven techniques, including ML and DL, for UAV-based agricultural disease detection, demonstrates 

the significance of this study. 

RQ3: Can you provide more context or clarify your questions? This will help me rephrase it 

more accurately. 

To view as pertinent material, we first settled a tailored search strategy. We narrowed the search 
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from general ideas like "ML" and "DL" to explicit phrases like "crop disease" and "UAV." The 

generated query string was as per the following: ("UAV" OR "unmanned aerial vehicle") + ("CD" + 

"ML" OR "DL"). Considering the tremendous progressions in machine learning and deep learning 

beginning around 2012, four databases were searched utilizing this query: IEEE Xplore, Scopus, 

Google Scholar, and MDPI. Titles and abstracts of articles published somewhere in the range of 2012 

and 2022 were the primary accentuation (as cited in [30]). 

Duplicate articles and non-peer-reviewed articles, like preprints, were eliminated during the 

article selection process. The following criteria were used to screen the entire texts, abstracts, titles, 

and keywords in order to eliminate irrelevant articles: 

● Articles not in English. 

● Publications related to agriculture that don't address crop disease estimation. 

● Publications on crop diseases that don't utilize UAV-based remote sensing. 

Following this procedure (Figure 1), we distinguished 55 publications for efficient analysis and 

combination to address the (RQ1-RQ4). 

3.  Background 

3.1 UAVs and remote sensing: 

Using energy that is reflected or transmitted from distant objects, remote sensing collects 

physical attribute data on an object without causing damage [31]. In active remote sensing, an object 

is interacted with, reflected energy is recorded, and the resulting images are transmitted, received, and 

analyzed. Precision agriculture (PA), which depends on precise temporal and geographical field data 

for sound decision-making, requires this method. Modern technologies are essential for managing PA, 

including networking, aerial sensors, and field-based sensors. Appropriate pesticide application [32], 

yield calculation [33], and irrigation management [34, 35] are just a few examples of PA operations 

where remote sensing has proven worthwhile. The three main ways these methods can be classified 

are field-based sensors, sensors based on satellites or airplanes, and sensors based on drones. 

Large-scale data collection using field-based sensors necessitates frequent relocation, which 

raises labor and expense expenses [36]. Spectral imaging from satellites or airplanes is frequently 

costly and might not always be available [38]. On the other hand, drones, also known as unmanned 

aerial vehicles, are a relatively new addition to PA. When weather permits, (UAVs) can revisit fields 

and obtain high-resolution imagery while flying in close proximity to crops [39]. UAVs come in a 

variety of designs, such as parafoil, hybrid, fixed-wing, flapping, and rotary-wing [12]. Popular UAV 
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models utilized in precision agriculture are shown in Figure 2 [12]. Fixed-wing UAVs are perfect for 

large-scale surveys because they can cover enormous regions quickly and with heavy payloads, but 

they need a lot of runway space. On the other hand, because of their versatility and ease of use, rotary-

wing UAVs—which have the ability to take off and land vertically—are preferred. [40]. 

 

Figure 2. Certain popular (UAVs) that are utilized in precision agriculture are: (a) fixed wing 

(Ebee), (b) quadcopter, (c) hexa-copter, (d) octocopter, and (e) flapping wing (Smart Bird) [41]. 

 (UAVs) are utilized in remote sensing to gather light spectrum reflections off diverse objects, 

including plants, soil, and water. Data on reflectance are fundamental for tracking crop growth [42]. 

Vegetation index (VI) pictures are pixel-level estimations that include algebraic operations on various 

spectral bands to generate differentiated information. Whether a VI image is (a) RGB-based, (b) 

multispectral, or (c) hyperspectral depends on the kind of sensor [43]. To detect plant illnesses, 

vegetation indices primarily use red and near-infrared bands from hyperspectral and multispectral 

sensors; however, they also use RGB-based VIs in combination with these types of VIs. For Table 2, 

where the spectral bands denoted by the letters "R," "G," "B," "NIR," and "RE" are red, green, blue, 

near-infrared, and red edge, respectively, the commonly used VI and their derived formulae are 

remembered. 
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3.2 Machine Learning 

Recent advances in machine learning and data examination have had a huge effect across 

various fields, including stock market prediction, computer vision, text mining, biomedical picture 

analysis, and precision agriculture. The strength of ML lies in its capacity to extract bits of knowledge 

from large datasets. In agriculture, how much data has increased dramatically with the introduction of 

sensors, GPS, and the Internet of Things. This has prompted a greater demand for thorough data 

analysis. In order to help choices for disease detection, crop monitoring, irrigation for executives, and 

yield prediction, these data may be examined under the guidance of machine learning [40]. 

ML methods apply rules or patterns found in training data to fresh data by using supervised or 

unsupervised learning procedures. Supervised learning approaches that are often used include support 

vector machines (SVM), decision trees (DT), random forests (RF), multi-layer perceptron (MLP) 

neural networks, and Naive Bayes (NB) [56–59]. These methods need manually labeling the 

contaminated regions in UAV photos in order to train the model [60]. Once trained, the model can 

identify if an ailment is present in another crop-field image [57]. 

In contrast, unsupervised machine-learning models work with unlabeled data and can uncover 

patterns without human intervention [61]. For example, Wang et al. used the k-means clustering 
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method to detect cotton root diseases by grouping image pixels based on their similarities. This 

approach successfully differentiated between healthy and diseased pixels by clustering them into 

separate groups [62]. 

 

3.3 Deep Learning  

DL has advanced dramatically over the last ten years, revolutionizing data analysis and pattern 

identification in domains such as CV [19], SP [63], and PA [55]. Deep Learning (DL) is an extension 

of neural networks that uses layered architectures to learn the hierarchical characteristics. 

Convolutional neural networks (CNNs), as shown in Figure 3, are widely used in computer vision 

applications, such as image recognition and organization [64]. Plans such as VGG [65], DenseNet 

[66], ResNet [67], and GoogleNet [68] use convolution, pooling, and actuation to extract higher-order 

semantic information. Consequently, CNNs have shown outstanding performance in remote sensing 

[40,70], wellness informatics [54-69], and natural language processing [71]. 

Precision farming has made use of DL. For instance, Zhang et al. [72] developed a DL 

framework to identify wheat yellow rust sickness using UAV aerial pictures. With Inception-v3 [73], 

ResNet50 [74], VGG [65], and Xception [75] as their architectures, they were able to achieve an 

astounding 99.04% accuracy rate with RGB images captured at a 2-meter level. This features the 

chance of accurately assessing disease utilizing refined DL models. However, these models require 

high-resolution pictures from low elevations, which can be impractical attributable to legitimate and 

operational constraints including battery life restrictions. Moreover, lower flight elevations reduce the 

coverage area of the UAV. 
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Figure 3. Example of a standard (CNN). 

3.4. Assessment Matrix 

To help with comparing the models in the parts that follow, this section gives an outline of the 

assessment metrics used to assess approaches for crop disease detection. The coefficient of 

determination (R²), as outlined in Equation (1), is commonly used to assess methods that estimate 

diseases using continuous dependent variables, such as disease scores or percentages. 

 

The primary approaches for evaluating disease estimating techniques where the dependent 

variable is discrete, such class or category representations, are precision (Equation (2)), recall 

(Equation (3)), I-score (Equation (4)), and accuracy (Equation (3)). 

 

 

 

Here, T_P 〖,T〗_n,F_P and F_n represent, in a specific order, true certain, true regrettable, 

bogus positive, and misleading negative qualities. Furthermore, P, R, F, and A stand for accuracy, 

recall, f-score, and precision, respectively. 

4. Classification of Crop Disease Assessment Using UAV Imagery 

We divided the current techniques for identifying agricultural diseases using UAV data into 

three main categories. Statistical techniques leverage a variety of (VIs) to extract agricultural attributes 

and apply regression and correlation studies to build linear correlations between disease and spectral 

data from UAV imagery. Second, classic (ML) approaches construct disease estimation models by 

utilizing vegetation indexes as input characteristics and applying conventional supervised or 
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unsupervised procedures. Lastly, deep learning techniques train end-to-end models for illness 

recognition employing UAVs using raw photos and other characteristics. 

 

Figure 4. A classification system for assessing agricultural illnesses by unmanned aerial vehicle 

remote sensing. The visual components used in one or more branches are represented by the items 

within the dotted box. 

4.1. Methods Based on Statistics 

Crop-related features from UAV data are utilized as the autonomous variables in language 

model-based approaches to appraise crop illnesses, with the disease score serving as the target variable. 
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The connection between these variables is determined by the strength of the correlation between them. 

Preprocessing UAV pictures, creating a vegetation index, and statistical analysis are the three 

processes in the procedure. To produce spatial data products that assist with extracting agricultural 

features at the plot or field level, such reflectance maps and advanced surface models, pre-processing 

is fundamental. The unmistakable spectral bands are used to create different vegetation indices after 

the reflectance map has been created. The current literature on crop disease estimation frequently 

utilize these indices as free variables in regression and correlation examinations. One productive 

technique to evaluate shelter cover, growth, and vigor is by means of (VIs), which can be acquired 

utilizing remote sensing platforms, for example, satellites and UAVs [36]. Covering data from VIs is 

utilized to evaluate crop traits like water stress, yield, and leaf area index [76]. Researchers have used 

a variety of vegetation indicators derived from UAV-based sensing frameworks to assess agricultural 

illnesses [56, 57]. An essential pipeline for disease evaluation utilizing viability indices (VIs) starts 

with extracting VIs from crop field pictures. Then, the illness score is utilized as the reliant variable 

and VIs as the free variables in a regression and correlation study [8, 16, 17]. 

Separating the crop fields into individual plots is the underlying move toward extracting the 

vegetation index (VI). Vegetation extraction at the plot level was in this manner performed utilizing 

the average vegetation index esteem across all plots. The approach embraced by Patrick et al. [17] was 

based on thresholds. They concocted a lot of vegetation indices, as NDRE, NDVI, and DVI, to tell 

healthy pixels from wiped out ones. The number of pixels was thereafter utilized as a reliant variable, 

whereas the disease score was used as a free variable. Yet, it's not generally simple to tell healthy plots 

from sick ones utilizing a particular threshold, particularly on the off chance that the index in question 

doesn't have a clear segmentation threshold. An alternative technique proposed by Shahi et al. [77] 

utilizes a measurement index or coefficient of variance. 

When comparing manual sickness assessments to UAV-gathered vegetation indices such as 

NDRE, NRRE, GDVI, and other indicators of nut wilt disease, Table 3 demonstrates the strongest 

connection (0.73). The most precise findings, according to Chang et al. [50], were obtained by 

calculating NDRE using UAV photos taken 120 days after planting. Four VIs (NDVI, MSAVI, NDRE, 

and CI) were prepared to distinguish between healthy and sick citrus fruits at a 5% importance level 

in instances of greening disease. Sugiura et al. [78] achieved a commendable R2 of 0.73 for UAV-

based potato blight surveillance by using a similar VI technique. Ye et al. [79] achieved a very 

enhanced accuracy of 91.7% by using CI, NDVI, and NDRE to identify Fusarium wilt in bananas. Guo 
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et al. [16] used hyperspectral indices and VI and texture integration with partial least square regression 

(PLSR) to monitor wheat yellow rot. Using VIs produced by RGB sensors, Bhandari et al. [51] 

examined wheat foliar disease and found a correlation with the coefficient of infection (CI). They 

assessed wheat leaf and stripe rust using RGB-based VIs such SRI and LRI, and by using the GUI 

index, they were able to get the highest R2 of 0.79. They found a correlation of 0.92 and 0.96, 

respectively, for the severity of white leaf rust and stripe rust (R2 = 0.81). This study illustrated how 

RGB sensors might be useful for estimating agricultural diseases using unmanned aerial vehicles. 

Multispectral sensors were used in six of the eleven research that were reviewed, whilst RGB 

and hyperspectral sensors were utilized in three and two of the studies, respectively. This distribution 

may depend on the spectral resolution and cost of the sensors. Despite their exorbitant cost, 

hyperspectral sensors cover over a hundred spectral bands and provide substantial canopy information. 

Multispectral sensors record a larger spectrum, including wavelengths that are invisible to the human 

eye, but at a greater cost. In terms of price and spectral resolution, they are situated between RGB and 

hyperspectral sensors. Due to their limited spectrum range of detection, RGB sensors—which are 

widely accessible and reasonably priced—may overlook important crop disease data. Thermal sensors 

have been investigated in a few research [80,81] to evaluate abiotic stress in crops. 

Table 3. An overview of ST-based methods for utilizing UAV photos to estimate agricultural 

diseases is provided.  WD, FD, GD, LB, FW, WLD, LR, SR, VW, and YR are some examples of 

disease acronyms. Additional symbols consist of OA, RGB, MS, HS, and R2 (coefficient of 

determination). 
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4.2 Conventional ML Based Method 

Using (UAV) footage, traditional ML techniques like (SVMs), (RFs), and (ANNs) have been 

used to detect crop disease and stress by identifying patterns in the data [53]. Supervised and 
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unsupervised machine learning are two prominent classifications for it. While unsupervised learning 

looks for hidden patterns in unlabeled data, supervised learning makes use of labeled input-output data 

pairs. Using training data, supervised learning algorithms like SVM, RF, and decision trees (DT) create 

rules for categorizing or forecasting test data. On the other hand, without outside supervision, 

unsupervised learning algorithms like K-means and SLIC uncover latent patterns [40]. 

Typically, feature extraction, model creation, and data collecting are steps in the machine-

learning process [63]. Using UAV photography, crop disease detection involves gathering data, pre-

processing it, extracting features, and creating a model. Drone-captured photos are pre-processed by 

stitching and adjustments to create Orth mosaic images [40]. Then, utilizing feature extraction methods 

like canopy characteristics and vegetation indices, pertinent data is taken out of these pictures. 

Ultimately, the model was implemented, verified, and trained. 

 

Figure 5. Standard process for employing Conventional ML in crop disease detection using 

aerial imagery captured by drones. 

The traditional approach to crop disease estimation with (ML) entails extracting features like 

structural canopy characteristics (e.g., crop height and volume), zonal statistics, and texture features. 

This goes beyond data collection and preprocessing in ST-based methods. Afterwards, ML models 

were constructed using these attributes to estimate crop illnesses. Conventional (ML)-based studies 

can be broadly classified as either supervised or unsupervised, as seen in Figure 5. Depending on how 

the crop disease variable is handled, supervised methods can be further subdivided into approaches 

based on classification and regression. 
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As indicated by Table 4, crop disease detection is usually approached by researchers as a 

regression problem or as a classification challenge. When it comes to classification, illnesses are 

viewed as discrete variables, and the number of correctly identified pixels serves as a performance 

indicator. For example, Xavier et al. [86] used three spectral bands (NIR, red, and green) for SVM, 

MLR, and RF classifiers, and discovered that SVM was the most successful in detecting leaf blight in 

cotton. A similar evaluation of SVM, RF, and ANN for FW detection in bananas utilizing spectral 

bands was done by Ye et al. [58]. SVM produced an accuracy of 91.40%. 

Researchers have used spectral bands and multispectral images (VIs) as features in machine 

learning (ML) models to detect agricultural diseases. Rodriguez et al. [87] identified potato late blight 

with an accuracy of 87% by utilizing visual aids and (ML) models with GBM, (SVC), (RF), and 

(KNN). A corn army-worm disease detection model was developed by Tao et al. [56] with spectral 

bands, the normalized difference vegetation index (NDVI), (RENDVI), (DSM), and RF. The model 

achieved 98.50% accuracy. Liu et al. [59] used a (BPNN) and simulated annealing to identify Fusarium 

head blight in wheat with 98.00% accuracy by utilizing spectral bands, hyperspectral VI, and textural 

features.  

In a research by [SS], Fusarium wilt (FW) in potatoes was detected with an accuracy of 84.0 

% using the mean VI and crop height in conjunction with GBM. The variance in (ML) model accuracy 

between crops underscores the intricacy of comparing performance, stressing the importance of taking 

climate, agricultural terrain, and crop varieties into account when choosing models. 

Researchers have used classification models and regression mapping techniques to estimate 

agricultural diseases. Zhu et al., for instance, employed (BPNN), (SVR), and (PLSR) on UAV 

multispectral imagery to estimate wheat scab (WS). They obtained the lowest RMSE of 3.35 and the 

highest R2 of 0.83 using various VIs and texture attributes.  

Bohnenkamp et al.'s hyperspectral sensor and SVM investigation of yellow rust (YR) on wheat 

produced an R2 of 0.63 by employing VIs as input features. At a height of 60 meters, the findings 

revealed a strong correlation (R2 = 0.88) between image-derived and manual sickness ratings. 

Additionally, an SVM was used to enhance the wavelet features, spectral bands, and UAV-based 

hyperspectral vegetation index for wheat (FHB) identification. These findings suggest that 

hyperspectral imagery from unmanned aerial vehicles has considerable potential for rapid and 

unbiased agricultural disease surveillance.  

However, few studies have used unsupervised methods to assess agricultural illnesses using 



 

464 | P a g e  
 

UAV data. Wang et al. used an SVM together with a combination of red, green, and NIR spectral 

bands to apply K-means for (CRR) detection, achieving 88.50% accuracy. Zhang et al. used supervised 

machine learning models such as SVM, BPNN, LR, and RF in combination with the (ISODATA) to 

identify (FW) in banana harvests. In contrast to K-means, which employs a set number of clusters, 

ISODATA assigns pixels to clusters and refines them via an iterative process.  

Table 4. An overview of the traditional machine-learning methods used to estimate crop 

diseases. The following are the abbreviations for the diseases: FHB, FW, LB stands for late blight. 

WS; YR WLD, CCD, BRR, CRR, and AW. Other pertinent techniques are represented by the 

acronyms listed below: DSM, WV, TF, HA, and SB. 

 

 

4.3 Deep Learning (DL)-Based Methods  

Crop disease estimate often uses deep learning (DL) methods such as U-Net, SegNet, YOLO, 

Faster R-CNN, VGG, and ResNet using (UAV) images. The essential components of these methods 

are CNN. Gathering, preparing, collecting, and assessing data are the usual steps in the process of 
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predicting agricultural disease using UAV photography. However, certain data preparation techniques 

like picture stitching, tiling, and annotation are needed in order to build a crop disease identification 

model. 

As shown in Figure 4, there are three types of deep learning models available for crop disease 

estimate using UAV imagery: classification-based, segmentation-based, and detection-based. 

Segmentation methods identify each pixel as healthy or sick, while classification models evaluate the 

whole picture to categorize it into predetermined illness categories. On the other hand, detection 

models build bounding boxes around items of interest and label them (for example, "healthy" or 

"diseased," as shown in Figure 6). While the evaluation criteria used for these procedures vary, 

prominent metrics include IoU, recall, accuracy, precision, and mean average precision (mAP). Crop 

and disease categories, sensors, flying heights, and detailed performance information are included for 

each approach in Tables 5-7.   

 

 

Figure 6. The standard process for detecting crop diseases using drone-based imagery relies on 

deep-learning techniques. 

4.3.1  Pixel-Based Segmentation Models 

The picture classification model divides the image's pixels into distinct sections. Pixels are 

clustered using iterative methods such as K-means or ISODATA in conventional segmentation 

procedures. Deep learning methods make use of an encoder-decoder architecture, in which the encoder 
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uses convolutions and down-examining to arrange the information image into a latent space, and the 

decoder spends inspecting procedures to reconstruct the segmentation map. A selection of the widely 

used encoder-decoder schemes for image segmentation using UAV images are shown in Table 5: U-

Net [94], PSPNet [99], SegNet [95], and others [100].  

Most studies [94, 101, 102] on crop disease segmentation in UAV data have used U-Net [103], 

a well-known deep learning model for semantic segmentation. Su et al.'s [94] UAV imagery 

monitoring of wheat yellow rot revealed that a five-band input combination outperformed RGB alone 

and VIs. Oliveira et al. [101] used U-Net with RGB photos taken at a 10-meter flying height to locate 

coffee nematodes. They also trained PSPNet using various coffee picture resolutions, and found that 

U-Net outperformed PSPNet with an accuracy of 69.00%.  

Zhang et al. [102] enhanced the architecture of a modified U-Net for wheat yellow rust 

detection using RGB aerial images by including irregular encoder and decoder modules as well as a 

channel-wise re-weight module. This resulted in a 97.13% accuracy rate using five-band input pictures. 

A separate study [104] reported 96.3% accuracy in separating wheat yellow rust using multispectral 

images and U-Net. These findings highlight the value of high-resolution images obtained at less than 

30 meters above the ground and demonstrate the suitability of U-Net for crop disease segmentation 

using aerial images from RGB or multispectral sensors.  

Several DL models aimed to using UAV images to detect agricultural diseases are shown in 

Table 5. Sheath rust (SR), northern leaf blight (NLB), vine mildew (VD), yellow rust (YR), Cercospora 

leaf spot (CLS), and nutrient-related chlorosis (NM) are among these illnesses. Veil R-CNN[105], 

SegNet[95], pixel-wise segmentation networks (PSPNet)[99], fully convolutional networks 

(FCN)[106], DeepLabV3[100], CropDocNet[107], and VddNet[108] are a few examples of these 

models. Cover R-CNN was used in a review led by Stewart et al. [105] to detect NLB in maize. The 

results showed an intersection over union (IOU) of 0.50 and an average accuracy of 0.96. The findings 

of this research suggest that deep learning-based occurrence segmentation may be used to identify 

plant diseases using UAV data.  To distinguish mildew in vines, Kerkech et al. [95] utilized 

multispectral pictures with SegNet [109] to categorize pixels into shadow, ground, healthy, or mildew 

layers. Accuracy in detection was 92% on grapevines and 87% on leaves. Similar to how a FCN [101] 

trained on DenseNet [66] could identify Cercospora leaf spot (CLS) on sugar beets, it could likewise 

distinguish healthy and background pixels. In different field settings, their technique yielded f-scores 

of 44.48% for background pixels, 88.26% for healthy pixels, and 93.90% for CLS, respectively. 
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4.3.2. Models of Object-Level Classification 

Characterizing an information picture into predetermined classes is the first move toward 

object grouping. A solitary field map was created by sewing together overlapping tiles from UAV 

photographs of agricultural areas. In order to train a deep learning model to classify picture tiles as 

healthy or unhealthy, the crop field area may be divided into small object-level tiles. The results are 

combined during post-processing to produce a new field map that includes the locations of the 

contaminated and healthy zones. Two deep learning approaches were used for crop disease 

arrangement using UAV imagery: pre-trained architectures such as ResNet, Inception-v3, VGG, 

DenseNet, MobileNet, and GoogleNet, which are reasonable for transfer learning and often trained on 

ImageNet, and handcrafted CNNs that should be trained from scratch for specific tasks. 

Wu et al. [98] utilized a transfer learning strategy involving ResNet for sore recognizable proof 

on maize utilizing high-resolution RGB UAV data that was gotten in two phases from a drone 

operating six meters over the ground. At first, they randomly cropped 500 x 500 pixel sub-pictures to 

train a spine CNN (ResNet). After pre-training on ImageNet, ResNet-34 was utilized to apply transfer 

learning. The result of the trained CNN was utilized to create an intensity guide of diseases, and sliding 



 

468 | P a g e  
 

windows were utilized to create taking care of patches over the original UAV photographs. Similar to 

this, Tetila et al. [110] utilized RGB pictures and a transfer learning strategy with many deep learning 

architectures already being used, including VGG, ResNet, Inception, and Xception, to characterize 

soybean leaf diseases. 

Their framework included three stages: 

To improve the quality and clarity of the given sentence while preserving its original meaning, 

the sentence has been rephrased as follows. 

Researchers have utilized various deep-learning strategies to order crop diseases utilizing UAV 

pictures. These techniques incorporate acquiring pictures, fragmenting leaves utilizing SLIC, and 

characterizing leaves into different disease levels. The Inception network accomplished the most 

noteworthy accuracy of 99.04%, outperforming the other models. Similarly, Zhang et al. utilized an 

Inception ResNet to identify yellow rust in wheat utilizing hyperspectral imagery, accomplishing 

85.00% accuracy utilizing a sliding window technique. The post-processing visualizes the rust guide. 

Custom CNNs have been created for explicit crop diseases. In order to classify RGB images of sliding 

windows into four groups—ground, healthy, slightly diseased, and sick—Kerkech et al. designed a 

CNN that was influenced by LeNet-5. 95.8% accuracy was achieved by this method after 

postprocessing. Similar LeNet-5 CNN was developed by Huang et al. using RGB images for HLB 

order on wheat, achieving 91.43% accuracy and outperforming SVM's 90.00% accuracy using features 

including LBP, histograms, and VIs. 

Table 6 gives an overview of the DL models based on object-level order that are utilized to 

identify agricultural diseases utilizing UAV data. The accompanying abbreviations are utilized in the 

table: FW (Fusarium wilt), JV (vine disease), Compact disc (corn disease), BD (banana diseases), HLB 

(Helminthophobia leaf blotch), YR (yellow rust), and NLB (northern late blight). 
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4.3.3. Object Detection Based Models 

A prominent area of study in computer vision is object detection [120], which is more complex 

than image classification tasks [96], which just give a class to an image. Object detection requires both 

object classification and localization. Bounding boxes are created around objects and labels are applied 

to them in object detection [96].  

There are two primary categories of object detection methods: single-stage and two-stage. 

Initially, an algorithm like selective search is used by two-stage detectors, such R-CNN [121], to 

suggest areas of interest (ROIs). After that, a linear support vector machine (SVM) is used for 

classification and a deep learning architecture like VGG [65] is used to extract features from these 

candidate areas. On the other hand, one-stage detectors use a deep learning model to evaluate incoming 

photos and predict item bounding boxes. Table 7 demonstrates that most studies choose one-stage 

detectors such as YOLO [96], RetinaNet [122], and CenterNet [123][121] [97], whereas fewer studies 

utilize two-stage detectors such as Faster R-CNN.  

Table 7. Here, is a rephrased version of the sentence. 

The following is a summary of the use of UAV imagery for detecting crop diseases using object 

detection, including the abbreviations for diseases (CRR, WW, WLD, DS, and TLB). 
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Figure 7 illustrates the distribution of studies based on the given taxonomy, with 55% utilizing 

deep learning techniques, 25% employing machine learning, and the fewest using statistics-based 

methods. This indicates that when assessing agricultural diseases utilizing UAVs and remote sensing 

technologies, deep learning is strongly preferred by precision agriculture experts. 

 

Figure 7. A review of 55 previous studies on estimating crop diseases using UAV imagery was 

organized according to the techniques used. "ST," "ML," and "DL" refer to statistical, conventional 

machine learning, and deep learning approaches, respectively. 

5. Results and Discussion 

By responding to the review questions, this section offers an overview of the material examined 

in section 2. The first section covers different UAV platforms and sensors, along with configurations 

like flying height. Next, we look at how these platforms affect the taxonomy's crop disease estimation 
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techniques. The most successful vegetation indices and how well they can identify particular crop 

diseases are then determined. It also assesses the effectiveness of several variables, such as vegetation 

indices, in conjunction with sophisticated data-driven crop disease estimating techniques, such 

traditional ML and DL. This section concludes by outlining the shortcomings, difficulties, and 

potential future developments of the UAV-based crop disease assessment system. 

5.1. UAV Sensing Systems 

In the last several years, UAV sensing systems have developed to such an extent that they are 

now essential tools for monitoring crop health, spotting diseases early on, and helping to limit crop 

disease outbreaks [40]. Using RGB, multispectral, and hyperspectral sensors, rotating-wing (UAVs) 

have become popular and effective platforms for answering Research Question 1 (RQ1) in Section 2. 

RGB sensors are typically employed in conjunction with DL methods for comparing (ML) and (DL) 

approaches for crop disease assessment, although multispectral (MS) sensors are more frequently used 

in conjunction with ML methods (see Figure ff). This implies that high detail images are needed for 

DL techniques, and RGB sensors can provide these images at closer ranges. However, due to their 

high cost and complicated data processing, hyperspectral sensors are used less in both ML and DL 

techniques (Figure S). Crop disease modeling techniques are correlated with the altitude at which 

UAVs fly. Most studies using the NIL framework have been conducted at altitudes exceeding 10 m, 

and several have gone up to 30 m. In contrast, DL-based studies primarily used altitudes below 20 m, 

with few studies using altitudes above 30 m (Figure S). This indicates that RGB sensors at lower 

altitudes are sufficient for high-resolution imagery required by DL methods. 
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Figure 8. Please provide the sentence you would like me to rephrase for better language quality and 

clarity. I am unable to generate a response without a specific sentence to work with. 

5.2 Type of Crops and Diseases 

Crop illnesses brought on by bacteria, fungus, and viruses may significantly reduce crop 

production and need efficient preventative measures to stop them from spreading widely. These 

diseases' symptoms, which include color and form alterations like leaf spots and yellowing, often show 

up on leaves. These visual signs are crucial for manual illness evaluation, and they might change based 

on the kind of disease and the pathogen involved. For instance, leaf rust, yellowing, leaf spots, white 
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mold, and stem rust are common indications of fungal infections.  

Insect pests and bacterial, viral, and fungal diseases are the four main categories into which 

this study divides research on crop diseases utilizing UAV imaging. The spread of these disease groups 

and the crop kinds that are afflicted are shown in Figure 9. Notably, 75% of the papers in the study 

were on fungal illnesses, which made up the bulk of the topics. This might be explained by the fact 

that, in deep learning-based methods, fungal illnesses are more prevalent and simpler to visually 

identify using RGB pictures (Figure 10).  

Regarding particular crop diseases, the identification of wheat disease is a major focus in 23 

percent of the research, with maize and potato coming in at 16 percent apiece. A fungus that is 

extensively researched in wheat is fusarium wilt. Deep learning and machine learning, along with UAV 

imagery, are common methods for detecting and monitoring this disease. 

 

Figure 9 
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Figure 9. The organization of prior research into two categories: (a) the pathogens responsible for 

crop diseases and (b) the specific crops under investigation. 

 

Ficure 10 
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Figure 10. Existing studies are categorized into two groups: those using conventional machine 

learning-based techniques and those employing deep learning-based methods. 

5.3. Conventional DL and ML Methods 

The volume of data collected by UAVs and other image sensors has made data-driven 

methods—like standard ML and DL—outperform classical statistical techniques in the estimate of 

crop diseases. However, all approaches need expert-annotated data before the model can be trained. 

Figure 10 shows the frequency of study using ML and DL models. The classic ML models (SVM), 

(RF), (MLP), and (GBM) are most often employed for agricultural disease assessment utilizing UAVs. 

The visual geometry group (VGG) is the most widely used model when it comes to (DL), closely 

followed by ResNet, CNN, and Inception. 

Table 4 shows the crop disease estimation accuracy of traditional machine learning models, 

with classification accuracy ranging from 72% to 98% and coefficients of determination from 63% to 

88%. The identification of Fusarium wilt in bananas had the highest accuracy rate (98%) while the 

detection of cotton rot roots had the lowest (72.73%). One cannot simply propose one machine learning 

method over another because different aspects affect the performance of these models, including 

sensor type, crop and disease type, and UAV flight height. However, ML techniques tend to 
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outperform RGB sensors when used with multispectral and hyperspectral sensors. 

ML and statistical (ST) approaches are surpassed by (DL) models, which get crop disease 

segmentation accuracies between 93% and 97% and classification accuracies between 85% and 100%. 

But in order to create illness maps, DL techniques are more involved and frequently call for pre- and 

postprocessing of UAV photos. (Picture 6). 

5.4 Summary of Findings 

Here's a possible rephrased version: 

i. We summarize our findings from a survey conducted on UAV-based crop disease estimation, 

highlighting the following aspects: (a) strengths and current research focus, (b) emerging trends 

in research and technology, and (c) challenges and potential solutions. Rapid advancements in 

UAV platforms and sensors have significantly affected crop disease detection owing to machine 

learning and deep learning methods. The survey results indicate a preference for RGB sensors 

combined with deep learning techniques, which suggests a shift towards cost-effective sensors, 

such as RGB sensors, instead of more expensive ones, such as hyperspectral and multispectral 

sensors. Notably, deep learning techniques have been proven to enhance the accuracy of crop 

disease estimation compared to traditional statistical and machine learning approaches. 

ii. Compared to diseases brought on by bacteria, viruses, and pests, our meta-analysis showed that 

fungal diseases have been researched the most using UAV-based remote sensing. Given the 

effectiveness of sophisticated deep learning models when combined with unmanned aerial 

vehicles, we suggest addressing the following issues and approaches for further study: 

iii. Factors such as flight altitude, payloads, and sensors affect the effectiveness of UAV sensing 

systems for crop disease estimation. To address this, it is necessary to develop cost-effective, high-

payload sensing technologies for small UAVs, which are limited in their payload capacity. 

Additionally, image resolution is crucial for deep learning models, and can be achieved through 

low-altitude flights or up-sampling techniques. 

iv. A significant challenge in the field is the lack of labeled data, as labeling requires expensive expert 

involvement. Future research should focus on unsupervised and semi-supervised techniques to 

mitigate this issue. Furthermore, because different studies' accuracy varies, choosing between 

deep learning models and traditional machine learning is challenging. To compare performance, 

a benchmark dataset for various agricultural diseases must be created. To overcome the high 

computational resource needs, lightweight deep learning models appropriate for edge computing 
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platforms, like IoT, should be developed. 

6. Conclusions 

The overflow of data acquired by various imaging sensors and UAVs has driven data-driven 

approaches, like deep learning (DL) and conventional machine learning (ML), to outperform 

traditional statistical strategies in crop disease estimation. However, these strategies require data that 

has been clarified by experts to start training the model. Figure 10 displays the frequency of study 

using ML and DL models. Support vector machine (SVM), random forest (RF), multilayer perceptron 

(MLP), and gradient boosting machine (GBM) are the most often used classical ML models for 

agricultural disease assessment using UAVs. The visual geometry group (VGG) is the most widely 

used model in deep learning (DL), closely followed by ResNet, CNN, and Inception. 

The goals of various UAV platforms, sensors, and data processing methods for remote 

agricultural disease monitoring are made clear by this comprehensive evaluation. It covers the 

challenges, potential results, and potential research directions in drone-based remote sensing for crop 

disease prediction in addition to offering a comprehensive scientific classification and meta-analysis 

of the available literature. Surprisingly, deep learning-based models outperform machine learning and 

statistical methodologies in UAV-based agricultural disease measurement. However, since these 

models often function as "secret elements," it is required to increase their receptiveness and restrict 

with regard to clarity in order to promote certainty and steadfastness. It takes a lot of work to 

investigate the best strategies to combine several remote sensing data modalities for crop disease 

diagnosis. Another intriguing path is to develop deep learning models that are small and suitable for 

edge computing platforms such as the Internet of Things. Every author contributed to the ideation, 

writing, method, data curation, and visualization of the paper. After T.B.S. took the lead in writing the 

first draft, A.N., C.-Y.X., and W.G. evaluated and revised the work. 
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ANN =   Artificial neural network 
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BPNN = Back propagation neural network  

CNN = Convolutional neural network 

DL = Deep learning  

DT = Decision tree  

DSM = Digital surface model  

DCNN = Deep convolution neural network  

FCN = Fully connected neural network  

GPS = Geographical positioning system  

GBM = Gradient boosting machine  

GLM = Generalized linear models  

ISODATA = Iterative self organizing data analysis technique  

IoT  = Internet of things  

IoU  = Intersection of union  

KNN = K-nearest neighbor Linear regression  

LR = Linear discriminant analysis  

mAP = Mean average precision  

MLP = Multi-layer perceptron  

ML = Machine learning  

MLR = Multiple linear regression  

NB = Naive Bayes  

PLSR = Partial least square regression  

PA = Precision agriculture  

QDA = Quadratic discriminant analysis  

RF = Random forest  

ROI = Region of interest  

SVM = Support vector machine  

UAV = Unmanned aerial vehicle  

VI = Vegetation index  

VGG = Visual geometry group  

XGBoost = eXtreme gradient boosting 
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