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Abstract 

Introduction: First of all, managing large heavy traffic is essential for maintaining 

performance and dependability in the field of data transmission and communication networks. 

This study investigates the use of queuing theory to analyse heavy traffic, providing a 

methodical way to anticipate and resolve congestion problems. 

Aim:  The purpose of this study is to explore and use Queuing Theory models, namely 

(M/M/1): ((C+1)/FCFS) and (M/M/2): ((C+1)/FCFS), to the prediction and stabilisation of 

congestion rates in communication and data transmission systems during periods of heavy 

traffic. 

Method: To analyse heavy traffic, we use Queuing Theory models (M/M/1) and (M/M/2) with 

((C+1)/FCFS) configurations. The main goals of the research are to develop methods for 

predicting periods of heavy traffic and creating consistent congestion rate formulas. To provide 

a thorough strategy for real-time traffic estimation and monitoring, these models are combined 

with standard heavy traffic monitoring characteristics. 

Findings:  Using Queuing Theory models, the study presents efficient approaches for 

predicting periods of heavy traffic and creating reliable equations for the rate of congestion. 

The study demonstrates how well (M/M/1) and (M/M/2) models forecast and control 

congestion under various traffic loads. 

Conclusion: Performance and resilience are improved when Queuing Theory models are 

incorporated into the analysis of heavy traffic in data transmission and communication systems. 
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The established techniques allow for precise forecasts and effective data flow management, 

guaranteeing that systems can withstand spikes in traffic volumes with little disturbance. 

Keywords: Queuing Theory, Heavy traffic, Data transmission, Communication, Traffic 

monitoring, Server.  

1. INTRODUCTION 

In the ever changing world of digital communication, data transmission systems' performance 

and efficiency are critical. The growth of internet-connected devices, streaming services, and 

cloud computing has resulted in an increase in the volume of data traffic. Therefore, it is 

imperative to develop effective approaches for analysing and managing heavy traffic [1]. This 

study applies the mathematical framework of queuing theory, which offers important insights 

into the behaviour of lineups in many service systems, to the heavy traffic analysis of data 

transmission and communication networks.  

Based on the study of waiting lines, queuing theory provides a strong toolkit for simulating and 

examining systems with high levels of delay and congestion. Queues are the buffers in network 

devices that hold data packets as they wait to be processed in the context of data communication 

[2]. It is crucial to comprehend these queue dynamics, particularly in instances of high traffic, 

in order to maximise network efficiency, lower latency, and avoid packet loss [3]. We may 

create prediction models using Queuing Theory that assist network administrators in 

anticipating congestion and putting procedures into place to preserve system stability.  

Two basic queuing models are used in this study: (M/M/1): ((C+1)/FCFS) and (M/M/2): 

((C+1)/FCFS. These models are particularly useful for studying communication systems 

because of their analytical tractability and relevance to actual network conditions. They are 

distinguished by their exponential inter-arrival and service time distributions. The (M/M/2) 

model provides a comparative view of how additional resources affect congestion and 

performance by extending the single-server queue model of the (M/M/1) model to a dual-server 

scenario.  

Our research attempts to extract useful techniques for predicting high traffic and creating 

reliable congestion rate equations. We develop a comprehensive framework for real-time 

traffic estimation and monitoring by combining these queuing models with conventional heavy 
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traffic monitoring characteristics. This methodology not only improves the precision of traffic 

forecasts but also facilitates the creation of preemptive strategies to efficiently handle heavy 

traffic.  

The design and administration of contemporary communication systems will be significantly 

impacted by the findings of this study. With the increasing complexity of networks and the 

growing need for dependable, high-speed data transmission, the capacity to anticipate and 

manage traffic congestion is essential for maintaining both overall user satisfaction and quality 

of service (QoS). Furthermore, by applying the lessons learned from Queuing Theory, more 

robust and scalable network infrastructures that can adjust to changing needs can be built.  

By bridging the gap between theoretical queuing models and real-world network management, 

this research offers a solid framework for analysing heavy traffic in communication and data 

transmission networks. We provide innovative answers to the problems brought on by growing 

data traffic by utilising queuing theory, which advances the development of dependable and 

effective communication networks. 

2. LITERATURE REVIEW  

Ata and Peng (2018) [4] discuss the difficulties in managing multiclass queueing systems in 

situations of high traffic when model parameters are unclear. The precise parameters of the 

queueing model may not be known in many real-world situations, which make it challenging 

to use conventional control strategies successfully. Asymptotic analysis approaches, which 

Cohen's work offers, can be used to create robust control strategies that function well even in 

the presence of substantial uncertainty regarding the system characteristics. The study shows 

that near-optimal performance may be attained with these strategies, improving the efficiency 

and dependability of multiclass queueing systems in unpredictable scenarios. 

Cohen (2019) [5] focuses on the difficulties in managing multiclass queueing systems in 

situations of high traffic when model parameters are unclear. It can be challenging to 

implement conventional control rules successfully in many real-world situations since the 

precise parameters of the queueing model may not be known. Cohen's research offers 

asymptotic analytic methods for creating reliable control strategies that function effectively 

even in the presence of high system parameter uncertainty. The study shows that these methods 
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can be used to attain near-optimal performance, improving the efficiency and dependability of 

multiclass queueing systems in unpredictable scenarios. 

Gurvich (2014) [6] looks at, with an emphasis on queue-proportion trains, the suitability of 

heavy-traffic consistent state approximations in multiclass queueing networks. Arrangements 

known as queue-proportion disciplines alter administration rates as per the proportions of 

different classes' queue lengths. Gurvich's work demonstrates that reliable performance 

forecasts for these systems can be obtained using heavy-traffic steady-state approximations. 

The study shows that these approximations hold under more general conditions than previously 

thought, which extends their applicability to more real-world queueing scenarios. The 

theoretical groundwork for the study and design of multiclass queueing networks utilising 

heavy-traffic approximations is provided by this work. 

Sani and Daman (2014) [7] offer a fundamental method for mathematical modelling of 

systems with high traffic queues. The significance of creating reliable models that can precisely 

forecast system performance in situations with high traffic is highlighted by their work. They 

investigate several mathematical methods for simulating queue dynamics and offer fixes for 

typical issues that arise in highly trafficked systems. grasp the fundamental ideas and 

procedures that support heavy traffic queueing theory requires a thorough grasp of this study. 

The writers go over several modelling techniques, stressing the difficulties and possible fixes 

in efficiently managing lines when they are almost full. 

Izagirre, Verloop, and Ayesta (2015) [8] examine how non-preemptive multiclass queues 

with relative priorities behave under high traffic conditions. Their research examines systems 

in which various client classes are given varied priority levels; however, preemption is 

prohibited, meaning that once a service starts, it cannot be stopped. The authors show how 

relative priorities affect system behaviour and derive performance indicators using heavy-

traffic analysis. The trade-offs of various priority schemes are emphasised in this study, which 

also offers helpful advice for creating queueing systems that must strike a balance between 

efficiency and justice for various client classes. 

3. THE MATHEMATICAL MODEL OF THE QUEUING THEORY 
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The framework utilised to examine and forecast the behaviour of waiting lines or lineups is 

known as the mathematical model of queuing theory. Arrivals, service times, queue discipline, 

and server count are some of its essential elements. Customers enter the system through the 

arrival process, which is represented by arrivals and follows a predetermined arrival pattern 

(such as deterministic or Poisson) [9]. After a customer reaches the head of the queue, their 

service time is determined by how long it takes to serve them; this is frequently represented 

using exponential or other distributions. Rules like first-come, first-served, or priority-based 

that determine which client is serviced next are referred to as queue discipline [10]. How many 

service points are available to accommodate consumers concurrently is indicated by the 

number of servers. Operational analysis techniques, Markov processes, and probability 

distributions are used to mathematically characterise these components and yield performance 

measurements such as average waiting time, queue length, and server utilisation [11]. 

Applications of queuing theory are seen in a number of industries, such as manufacturing, 

telecommunications, healthcare, and transportation, where it is used to maximise system 

efficiency, reduce waiting times, and optimise resource allocation [12].  

When heavy traffic analysis is applied to communication and data transmission networks in 

queuing theory, the mathematical model becomes especially concentrated on situations in 

which the system is highly utilised and congested [13]. Here, the amount of servers or 

processing nodes available, the arrival rates of data packets or requests, and the service times 

for processing these packets are all taken into account by the queuing model. Arrival rates can 

exhibit patterns similar to those seen in heavy traffic; these patterns are frequently represented 

as Poisson processes or more intricate arrival processes that represent spikes in activity [14]. 

Depending on the features of the system, service durations are sometimes modelled using 

distributions like exponential or heavy-tailed distributions, which account for the time needed 

to process a packet or handle a communication request.  

When several things compete for limited processing resources, queue discipline becomes 

important in deciding how packets or requests are managed, influencing factors like fairness, 

prioritisation, or quality of service guarantees [15]. The quantity of servers indicates the 

system's ability to process several requests at once, which affects latency, throughput, and other 

performance indicators. Stochastic processes, Markov chains, and sophisticated probability 

theory are some of the mathematical techniques used to analyse these systems in heavy traffic 
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situations. Queue lengths, waiting times, server utilisation rates, and throughput capacity are 

some of the performance metrics that are obtained and are essential for streamlining traffic 

management plans, resource allocation, and network architecture [16]. Therefore, queuing 

theory is essential to building reliable and effective communication networks that can manage 

high-volume data transfer demands.  

A basic queuing model can be found in all of the processes involved in network 

communication, from sending and receiving data to coding, decoding, and sending the data to 

a higher layer. This corresponding technique can be abstracted as a Queuing theory model, as 

shown in figure 1, according to Queuing Theory. Given that this type of straightforward data 

transmission system complies with the queue model. 

 

Figure 1: Queuing Theory Model of the Communication Process 

From the above figure-1:  

: The sender's rate of transmission. 

TN: Time of transportation delay. 

: The speed at which data packets arrive. 

Nq: The number of data packets kept in the buffer for short-term storage. 

:The rate of packets that the recipient sends incorrectly, or the receiver's loss rate. 

Ts: The server's data packet service time 
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In this case, Ts=TJ+TD+TC,  

TJ: Time of Decoding  

TD: Time of dispatch 

TC: Calculating time or, evaluating time or handling time. 

4. MODEL 1: SINGLE-SERVER QUEUING MODEL (M/M/1) FOR HEAVY 

TRAFFIC ANALYSIS (C+1/FCFS) 

Assuming a Poisson distribution and a Markov process, the sending process of the sender is 

represented by the first "M" in the M/M/1 model, while the receiving process is represented by 

the second "M." A single channel is indicated by the number "1". The queue length at time t 

can be represented as N(t)=n. As a result, the probability indicates the likelihood that the queue 

will have length n at time t. 

Pn prob (t) = [N(t)= n] 

In this instance,  

n = Arrival rate into the state  

n =Departure rate from the initial state n. 

The transition rate diagram is available. 

Figure 2 shows the diagram of the transition rate. A collection of differential difference 

equations describes the system. 

 

Figure 2: Diagram of the state transition 
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A differential difference equation system is. 

 

For the M/M/1 model, we let 

n =  and n =   

Where the constants λ and µ are 

Next, (1) and (2) come down to 

 

In this case, the arrival rate is denoted by λ, and the service rate by µ. 

When everything is in a stable state 

 

Thus, based on (2) and (3), when t→ we have 
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When n=1 from (4), we have 

 

Additionally,  stands for traffic intensity or server utilisation factor.  

We are aware 

 

Also    

This suggests that 
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Hence 

 

Assume that L represents the queue's length in a steady state scenario. The average volume of 

every data packet that enters the processing module and is stored in the buffer is included. 

 

If Nq displays the data packets' average volume in the buffers. 
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The parameter is introduced into the formula (8) if the processing module is thought of as a 

closed region.  

By applying Little's law, we obtain 1/μ = server's average service time = Ts. 

 

By using (9), (8) becomes 

 

The aforementioned equation (10) leads us to the conclusion that the three variables Ts (service 

time), (sending rate), and Nq (number of data packets kept in the buffer) are crucial for 

assessing the transmission system's performance. By applying Queuing Theory to evaluate 

performance effectively in data transmission and communication systems under high traffic 

conditions, we may ascertain the value of the third variable by knowing any two of the other 

two. 

5. QUEUING THEORY AND THE HEAVY TRAFFIC MONITOR 

A key idea in computer science and operations research, queuing theory is especially important 

for comprehending and controlling situations with heavy traffic in communication networks 

and systems. Queuing theory is primarily concerned with the mathematical modelling and 

analysis of lines or queues that are waiting [17]. It offers a systematic framework for 

anticipating and improving the operation of systems in which entities (such requests, clients, 

or data packets) arrive at a service point and wait to be processed.  

Queuing theory provides important insights into how networks manage throughput during peak 

hours and handle congestion in the context of heavy traffic monitoring. Network engineers and 

academics can use it to study diverse scenarios, including varied data packet arrival rates or 
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different server or router processing capacities [18]. They can estimate important performance 

measures like waiting times, queue lengths, and system utilisation by examining these models.  

The capacity of queuing theory to provide quantitative predictions and optimise system 

parameters for increased dependability and efficiency is one of its main advantages in heavy 

traffic analysis. For example, models such as the M/M/1 and M/M/2 queuing systems can be 

used by academics to mimic and comprehend the behaviour of networks under heavy load 

conditions. These models take into account variables that affect the network's overall 

performance and congestion levels, such as data packet arrival rates, service times, and server 

availability.  

The design of efficient traffic management systems is aided by queuing theory. Network 

managers can put policies and protocols in place that prioritise traffic, distribute resources 

effectively, and reduce delays or packet loss during spikes in demand by researching queueing 

models [19]. By cutting down on latency, this proactive strategy not only improves user 

experience but also makes sure the network runs within ideal performance limits.  

Through the provision of analytical tools and methodologies to anticipate, analyse, and 

optimise system performance under various load conditions, queuing theory plays a crucial role 

in the heavy traffic monitoring of data transmission and communication systems [20]. When 

used in dynamic and demanding contexts, it enables network engineers and researchers to make 

well-informed decisions that improve network resilience, efficiency, and overall user pleasure. 

5.1. Using Queuing Theory to Forecast Heavy Traffic 

In data transmission and communication networks, heavy traffic is a common problem. In 

severe traffic situations, the system's performance can drastically deteriorate, causing network 

congestion. Monitoring and controlling traffic congestion are the subject of much research, and 

applying Queuing Theory to traffic rate analysis is receiving more and more attention.  

We frequently test the network's routers' data handling capacities in order to predict traffic 

rates. Think of a router that has these configuration settings: 

• Arrival rate of data flow (λ): The speed at which information packets travel along the 

path. 
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• Service rate (μ): The average processing speed of a packet by the router, with an 

average processing time of 1/μ. 

• Buffer capacity (C): The highest quantity of packets that the router's buffer can store. 

The packet needs to be dropped (discarded) when it comes and the buffer is full. A packet must 

be resent if its arrival time exceeds a predetermined threshold (timeouts). Assume that 1/μ 

represents the average waiting time for a packet.  

The probability that the queue length is i at time t is defined as Pi (t). The probabilities of the 

queue length can be shown as:  

P(t) = (P0 (t), P1 (t), . . . , Pi (t) ), i = 0,1, . . . ,C+1 . 

The router's date groups' queuing system therefore fulfils the basic Markov Process, and using 

this process, we can determine the diversion strength of model 1's matrix as follows. 

 

5.2. Network Congestion Rate  

The rate of network congestion is constantly fluctuating. When analysing high traffic in a 

network monitor, the instantaneous congestion rate and the stable congestion rate are frequently 

utilised. The congestion rate at time t is known as the instantaneous rate Ac (t). The system 

length of the queue's probability distributing, or Pc+1(t), can be solved to find the Ac (t).  

Assuming that the queue length is k, let Pk (t)(K=0,1,. . .,C+1) represent the arrival probability 

of the queue length for the routers group at time t.  
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Then, the router's date groups' queuing system fulfils the basic Markov Process. Pk(t) satisfies 

the following system of differential equations, according to Markov Process. 

Let,  

Pk(t) = prob { k no. of data packets present in the system in time t } 

and Pk(t+∆t) = prob { k no. of data packets present in the system in time (t + ∆t) } 

Case 1: 

For k ≥ 1  

Pk(t+∆t) = Prob { k no. of data packets present in the system at time t }  prob {no data 

packetno data packets arrival in time ( ∆t) }  departure in time ∆t } + Prob { ( k -1) no. of data 

packets present in the system at time t }   prob { no data packetprob { 1 data packet arrival 

in time ( ∆t) }  departure in time ∆t } + prob { ( k +1) no. of data packets present in the system 

at time t }  prob { no data packets arrival in time ( ∆t) }  prob { 1 data packet  departure in 

time ∆t }+. . . 

 

Dividing both sides byt and taking limit as t→0 

 

 

Here in state k data packet arrival is (+k) 
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Also in state k data packet departure is  

 

Hence (11) reduces to 

 

Case 2: 

For k =0, we have 

P0(t+∆t) = prob {no data packet present in the system in time (t+∆t) }   

= prob {no data packet present in time t }  prob { no data packet arrival in time ∆t } + prob {one 

data packet present in time t}  prob {no data packet arrival In time ∆t }  prob { one data packet 

departure in time ∆t } . 

 

Dividing both sides by t and taking limit as t→0, we get 

 

Case 3:  

For k =C+1, we have 

PC+1(t+∆t) = prob { (C+1 ) no. of data packet present in the system in time (t+∆t )}  
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= prob {C no. of data packet present in time t }  prob {1 data packet arrival in time ∆t } prob 

{ no data packet departure in time ∆t } + Prob { (C+1) no of data packets present in time t }  

prob { no data packet departure in time ∆t } 

 

Dividing both sides by t and taking limit as t →0 we get 

 

The instantaneous congestion rate A0(t) can be found by solving this system of differential 

equations as part of our analysis using Queuing Theory for heavy traffic in data transmission 

and communication networks. 

 

To evaluate the system's steady operating state, the instantaneous congestion rate is not enough. 

Determining the stable congestion rate, which stays constant throughout time when the system 

functions in a stable condition, is therefore crucial. In the context of Heavy Traffic Analysis of 

Data Transmission and Communication Systems Using Queuing Theory, the stable congestion 

rate is defined as follows. 

 

Taking into account P = limt→∞ P (t) as the queue's stable length distribution and C as the 

router's buffer, there are two methods to determine the stable congestion rate: first, we get the 

instantaneous congestion rate and then figure out its limit. Its definition states that it can be 

obtained by dispersing the queue's length. Second, we know from the Markov Process that a 
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system of steady state equations can be used to distribute a queue's stable length. The 

differential difference equation system that results from equations (12), (13), and (14) is as 

follows. 

 

Certain Markov process properties state that  

Pi(t) = (i=0,1,2,…,C+1) is known to satisfy the differential equation above. 

 

For steady state condition  

The balancing equations that follow are transformed into (15), (16), and 17 under steady state 

conditions. 

 

The system of steady state equations mentioned above can be expressed in a matrix as 
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Where P = (P0, P1,…,Pc+1) 

And  

 

For C= 0,  

From (19) we get 

 

Solving (21) and (22) we get 

 

Hence 
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We determine that the steady-state congestion rate is 

 

6. MODEL 2: THE TWO-SERVER QUEUING MODEL (M/M/2) FOR HEAVY 

TRAFFIC ANALYSIS (C+1/FCFS) 

There are two servers or channels in this model, and they are arranged in parallel. With a mean 

rate of  per unit time, the arrival distribution in this case is a Poisson distribution. With a 

mean rate of  per unit time, the service time is exponential. Every server is the same, meaning 

that they all provide the same services at a mean fee of  per unit of time. There are two ways 

to find the overall service rate. If the system has n different numbers of data packets. 

Case-1  

For n < 2  

There won't be a queue. The aggregate service rate will be as a result of (2-n) servers remaining 

idle. 

n = n, 1n< 2  

Case-2   

For n  2  

After then, every server would be busy. Thus, the highest possible (n-2) (≤C+1) quantity of 

data packets in the queue. The total service charge will be 

n = 2, n  2 

Thus, when we combine Cases 1 and 2, we obtain 
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𝜆𝑛 = 𝜆,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0 

𝜇𝑛 = 𝑛𝜇, 1 ≤ 𝑛 < 2 

𝜇𝑛 = 2𝜇, 𝑛 ≥ 2 

𝜇0 = 0, 𝑛 = 0 

𝜇1 = 𝜇, 𝑛 = 1 

 

Figure 3: Diagram of the state transition rate 

The formulas for the steady state are, 

                                                 𝜆𝑃0 = 𝜇𝑃1, 𝐹𝑜𝑟 𝑛 = 0                                                         (24) 

                                     (𝜆 + 𝛾 + 𝜇)𝑃1 = 𝜆𝑃0 + 2𝜇𝑃2,   𝐹𝑜𝑟 𝑛 = 1                                      (25) 

           {𝜆 + (𝑛 − 1)𝛾}𝑃𝑛−1 + 2𝜇𝑃𝑛+1 = (𝜆 + 𝑛𝛾)𝑃𝑛 + 2𝜇𝑃𝑛,    𝑓𝑜𝑟 2 ≤ 𝑛 ≤ 𝐶                 (26) 

                                      (𝜆 + 𝐶𝛾)𝑃𝐶 = 2𝜇𝑃𝐶+1,       𝐹𝑜𝑟 𝑛 = 𝐶 + 1                                     (27) 

The system of steady state balancing equations mentioned above can be expressed as a matrix 

as 

𝑃𝑄 = 0 

And ∑ 𝑃𝑖 = 1
𝐶+1
𝑖=0  

Where P = (P0, P1,…,Pc+1) 

And 
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𝑄 =

(

 
 
 
 
 
 

−𝜆 𝜆 0 0 … 0 0
𝜇 −(𝜆 + 𝜇 + 𝜈) 𝜆 + 𝜈 0 … 0 0
0 2𝜇 −(𝜆 + 2𝜇 + 2𝜈) 𝜆 + 𝜈 … 0 0

0 0 2𝜇 −(𝜆 + 2𝜇 + 3𝜈) … 0 0
0 0 0 2𝜇 … 0 0
. . . . … . .
. . . . … . .
0 0 0 0 … −(𝜆 + 2𝜇 + 𝐶𝜈) 𝜆 + 𝐶𝜈
0 0 0 0 … 2𝜇 −2𝜇 )

 
 
 
 
 
 

 

For C=0 we have  

                                                             P0 = P1                                                           (28) 

                                                        Also, P1 + P0 =1                                                       (29) 

From (29) we get P0 = 1−P1 

Then (28) becomes 

𝜆(1 − 𝑃1) = 𝜇𝑃1 

⇒ 𝑃1 =
𝜆

𝜆 + 𝜇
 

Hence 

𝐴0 = 𝑃1 =
𝜆

𝜆 + 𝜇
 

We determine that the steady-state congestion rate is 

𝐴𝐶 = 𝑃𝐶+1 = 1 −
2𝜇

(𝜆 + 2𝜇 + 𝐶𝛾)𝐴𝐶−1 − {𝜇 + (𝐶 − 1)𝛾}(1 − 𝐴𝐶−1)𝐴𝐶−2 + 2𝜇
 𝑓𝑜𝑟 𝐶 ≥ 2 

7. CONCLUSION AND RECOMMENDATIONS 

Using Queuing Theory, this research programme explores the heavy traffic analysis of 

communication and data transmission networks. In order to efficiently estimate and handle 

large traffic, we are concentrating on building and analysing queuing models. Specifically, we 

use two queuing models to anticipate and stabilise congestion rates in heavy traffic: (M/M/1): 

((C+1)/FCFS and (M/M/2): ((C+1)/FCFS. These models are essential for predicting future 
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congestion points and comprehending the behaviour of heavy traffic under various 

circumstances. The utilisation of these models from Queuing Theory offers a simple and 

effective way to calculate and track heavy traffic in communication networks. We can 

efficiently monitor and control network performance by gaining a more comprehensive and 

accurate picture of traffic flow through the analysis of these models. This is especially crucial 

for preserving network dependability and efficiency across a variety of traffic scenarios, such 

as ideal, normal, and high-overhead ones. In the end, our research emphasises how important 

heavy traffic rate analysis is to the field of communication systems and data transmission. We 

can make sure that heavy traffic is watched over and handled in a way that improves the overall 

performance and stability of communication networks by utilising Queuing Theory models. 

This study emphasises how crucial accurate traffic management techniques are to the upkeep 

of reliable and effective network communication systems.  

Beyond (M/M/1) and (M/M/2) models, future research should examine complicated systems 

such as (M/G/1) and (G/G/1), investigate dynamic and intermittent traffic patterns, and assess 

the effects of newly developing technologies like 5G and IoT. Our understanding and 

management of heavy traffic in data transmission and communication systems will be further 

improved by integrating machine learning with queuing theory, examining scalability in large 

networks, examining QoS and QoE impacts, optimising resource allocation strategies, carrying 

out extensive simulations and real-world testing, researching the effects of security measures 

on traffic patterns, and investigating policy and regulatory implications. 
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