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Abstract 

Introduction: In-depth study of multiclass queueing systems functioning in high traffic 

situations is presented in this work. Through application of an asymptotic method based on 

distributional and conservation laws, we obtain important insights into these systems' 

performance and behaviour.  

Aim: The primary goal of the study is to use an asymptotic method based on distributional and 

conservation principles to analyse multiclass queueing systems in situations of high traffic.  

Methodology: Based on basic distributional and conservation laws, we suggest a novel way to 

analyse multiclass queueing systems with high traffic. From a methodological standpoint, we 

ascertain the heavy traffic behaviour of the following systems by extending the distributional 

rules to multiple classes and merging them with conservation laws: 

▪ The ƩGI/G/1 queue is FIFO.  

▪ The ƩGI/G/1 queue has priority.  

▪ General arrival distribution polling systems  

Results: Our method handles problems that classic heavy traffic theory has not fully addressed, 

yields closed-form solutions, and offers deeper insights into the asymptotics employed than 

standard heavy traffic analysis via Brownian processes. Even in moderate traffic situations, 

these answers are much more accurate than simulations.  

Conclusion: In summary, this study's findings deepen our understanding of multiclass 

queueing dynamics in high-traffic environments and have important ramifications for how 

contemporary communication networks and data transmission systems are designed and 

optimised.  

Keywords: Heavy traffic analysis, Multiclass queueing systems, Distributional laws, 

Conservation laws, Priority, Arrival distribution. 
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1. INTRODUCTION 

Queuing systems are essential models that are used in a variety of fields, including 

telecommunications, computer networks, and manufacturing, to better understand and optimise 

a variety of processes. There are numerous situations that occur in the real world in which these 

systems frequently encounter heavy traffic circumstances. This occurs when the arrival rates 

of tasks or requests surpass the capacity of the system, which results in congestion and a loss 

of performance. When there is a lot of traffic, multiclass queueing systems, which are designed 

to accommodate different kinds of jobs or customers with differing service requirements, create 

extra complications.  

Utilising an asymptotic method that is founded on distributional and conservation laws, the 

purpose of this research is to investigate the complex dynamics of multiclass queueing systems 

that are operating in heavy traffic regimes [1]. The standard queueing theory offers useful 

insights into the behaviour of the system in light to moderate traffic situations; however, its 

applicability decreases in heavy traffic scenarios due to the increased complexity and 

nonlinearity of the situation. Along these lines, there is a critical prerequisite for complex 

scientific devices that can unravel the major instruments that drive the activity of the 

framework under such conditions. 

The core principles of queueing theory serve as the basis for our approach, which extends 

distributional laws to accommodate numerous classes of employees or consumers. We intend 

to shed light on the heavy traffic behaviour of multiclass queueing systems by combining these 

distributional laws with conservation laws. In particular, we will be concentrating on systems 

that have general service disciplines such as priority disciplines. Through the utilisation of this 

comprehensive methodology, we are able to capture the complex interactions that occur 

between the various categories of traffic, accordingly uncovering knowledge on the central 

elements that affect the presentation of the framework. 

Furthermore, the purpose of our research is to overcome the limits of conventional methods for 

analysing large traffic, such as those that are based on Brownian approximations. Despite the 

fact that these methods provide useful insights, they frequently fail to adequately capture the 

subtle behaviours of complicated multiclass queueing systems. We mean to overcome any 

barrier among hypothesis and practice by embracing an asymptotic methodology that depends 

on distributional and conservation laws. This will allow us to provide a more comprehensive 

knowledge of the behaviour of the system when it is subjected to heavy traffic. 

2. LITERATURE REVIEW  

Ata and Peng (2018) [2] discuss the difficulties in managing multiclass queueing systems in 

situations of high traffic when model parameters are unclear. The precise parameters of the 

queueing model may not be known in many real-world situations, which make it challenging 
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to use conventional control strategies successfully. Asymptotic analysis approaches, which 

Cohen's work offers, can be used to create robust control strategies that function well even in 

the presence of substantial uncertainty regarding the system characteristics. The study shows 

that near-optimal performance may be attained with these strategies, improving the efficiency 

and dependability of multiclass queueing systems in unpredictable scenarios. 

Cohen (2019) [3] focuses on the difficulties in managing multiclass queueing systems in 

situations of high traffic when model parameters are unclear. It can be challenging to 

implement conventional control rules successfully in many real-world situations since the 

precise parameters of the queueing model may not be known. Cohen's research offers 

asymptotic analytic methods for creating reliable control strategies that function effectively 

even in the presence of high system parameter uncertainty. The study shows that these methods 

can be used to attain near-optimal performance, improving the efficiency and dependability of 

multiclass queueing systems in unpredictable scenarios. 

Gurvich (2014) [4] looks at, with an emphasis on queue-proportion trains, the suitability of 

heavy-traffic consistent state approximations in multiclass queueing networks. Arrangements 

known as queue-proportion disciplines alter administration rates as per the proportions of 

different classes' queue lengths. Gurvich's work demonstrates that reliable performance 

forecasts for these systems can be obtained using heavy-traffic steady-state approximations. 

The study shows that these approximations hold under more general conditions than previously 

thought, which extends their applicability to more real-world queueing scenarios. The 

theoretical groundwork for the study and design of multiclass queueing networks utilising 

heavy-traffic approximations is provided by this work. 

Sani and Daman (2014) [5] offer a fundamental method for mathematical modelling of 

systems with high traffic queues. The significance of creating reliable models that can precisely 

forecast system performance in situations with high traffic is highlighted by their work. They 

investigate several mathematical methods for simulating queue dynamics and offer fixes for 

typical issues that arise in highly trafficked systems. grasp the fundamental ideas and 

procedures that support heavy traffic queueing theory requires a thorough grasp of this study. 

The writers go over several modelling techniques, stressing the difficulties and possible fixes 

in efficiently managing lines when they are almost full. 

Miyawaki, Masuyama, and Takahashi (2013) [6] concentrate on obtaining asymptotic 

formulas for heavy traffic in the multiclass FIFO MX/G/1 queue. Their study sheds light on 

how multiclass queues functioning under the FIFO discipline behave in situations with high 

traffic. The authors provide clear formulas that roughly represent important performance 

measures including wait times and queue lengths. They also put out conjectures for extending 

these findings to broader queueing models. For practitioners requiring precise performance 

forecasts for multiclass FIFO queues, especially in systems where exact service order 

adherence is vital, this study is essential. 
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Izagirre, Verloop, and Ayesta (2015) [7] examine how non-preemptive multiclass queues 

with relative priorities behave under high traffic conditions. Their research examines systems 

in which various client classes are given varied priority levels; however, preemption is 

prohibited, meaning that once a service starts, it cannot be stopped. The authors show how 

relative priorities affect system behaviour and derive performance indicators using heavy-

traffic analysis. The trade-offs of various priority schemes are emphasised in this study, which 

also offers helpful advice for creating queueing systems that must strike a balance between 

efficiency and justice for various client classes. 

3. THE MULTICLASS DISTRIBUTIONAL LAW  

A cornerstone of queueing theory, a subfield of applied mathematics and computer science 

concerned with the analysis and optimisation of systems in which entities, such as patrons in a 

queue or jobs in a computer system, wait for service, is the Multiclass Distributional Law. This 

law is especially important for systems that manage various traffic classes or tasks, each with 

specific characteristics and needs for services. 

Fundamentally, the Multiclass Distributional Law deals with the arrival and service time 

statistical distribution among several classes in a system. When entities arrive at a system in 

real-world circumstances, they may fall into multiple categories. For example, high-priority 

clients at a service desk can be different from typical customers, or short activities in a 

computing environment might be different from long-running tasks. There are usually distinct 

arrival rates, service time distributions, and priority levels for each class of arrivals. 

The Multiclass Distributional Law places a strong emphasis on comprehending the interactions 

between these many arriving classes inside the system. Analysing the total traffic intensity is 

one way to do this since it shows the total burden that all arrival classes have placed on the 

system. In order to evaluate system performance and make sure that the system's capacity 

corresponds with the incoming workload, it is imperative to comprehend the total intensity of 

traffic. 

A further crucial aspect of the Multiclass Distributional Law is the examination of the wait 

times encountered by entities within each respective class. This entails estimating the typical 

wait time using the attributes of the system and contrasting it with the actual wait time that was 

observed [8]. Insights about system performance and potential areas for development, like 

better resource allocation or service priority setting, can be gained from discrepancies between 

expected and observed wait times. 

Another important statistic covered by the Multiclass Distributional Law is operational 

efficiency. This metric assesses how well the system uses its resources to accommodate 

incoming entities of various kinds. While low efficiency may point to inefficiencies or 

bottlenecks that need to be fixed, high operational efficiency shows that the system is 

processing arrivals efficiently. 
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All things considered, the Multiclass Distributional Law offers a thorough foundation for 

examining and refining systems that manage various arrival classes. In order to improve 

performance and resource utilisation, stakeholders can make well-informed decisions and 

obtain useful insights into system behaviour by taking into account variables like wait times, 

total traffic intensity, and operational efficiency across different classes. 

We look at a general queueing system by which N classes of buyers are involved, each with 

distinct service requirements and independent, random renewal arrival streams. Assumptions 

A are satisfied by the system, we presume. Let ai(s) be the Laplace change of the ith class' 

interarrival distribution, where c2αi is the square coefficient of variation and arrival rate λi = -

1/αi(0). 

This is how the multiclass distributional law is expressed: 

Theorem 1: In the case of a queueing system meeting Assumptions A, 

            𝐺𝐿1,….,𝐿𝑁
(𝑍1, … . , 𝑍𝑁) = 1 +  ∑ ∫ ∫ ∏ 𝐾𝑗(𝑍𝑗 , 𝑥)𝑑𝐾𝑖(𝑍𝑖, 𝑥)𝑗≠1  𝑑𝐹𝑆𝑖

(𝑡)
𝑡

0

∞

0
𝑁
𝑖=1                (1) 

            𝐺𝑄1,….,𝑄𝑁
(𝑍1, … . , 𝑍𝑁) = 1 +  ∑ ∫ ∫ ∏ 𝐾𝑗(𝑍𝑗 , 𝑥)𝑑𝐾𝑖(𝑍𝑖, 𝑥)𝑗≠1  𝑑𝐹𝑊𝑖

(𝑡)
𝑡

0

∞

0
𝑁
𝑖=1              (2) 

with 

𝐾𝑖(𝑍𝑖, 𝑡) =  ∑ 𝑍𝑖
𝑛𝑃{𝑁𝑎𝑖

∗ (𝑡) = 𝑛}

∞

𝑛=0

 

Proof: 

Let τ represent the moment at which an observer begins monitoring the system. Let Ti,ni 

represent the nth
i customer's arrival time in the ith class and Si,ni represent his system time. Keep 

in mind that the consumer with the number 1 in each class is the one who arrived the newest. 

If the server is truly busy, the client they are presently serving has to be the highest ordinal 

number in his class. As a result, the time order of Ti,ni and Si,ni is reversed.  

The forward repeat season of the ith arrival process is addressed by 𝑇𝑖,1
∗ =  𝜏 −  𝜏𝑖,1 𝑓𝑜𝑟 𝑖 =

1, . . . , 𝑁, 𝑖. 𝑒. , 𝑇𝑖,1
∗ . The interarrival season of the ith arrival process is addressed by 𝑇𝑖,𝑛𝑖

=

 𝜏𝑖,𝑛𝑖
− 1 −  𝜏𝑖,𝑛, 𝑛𝑖  ≥ 2, 𝑖. 𝑒. , 𝑇𝑖,𝑛𝑖

. 

The proof's main finding is that, for each i between 1 and N, the nth
i i

th class customer must still 

be in the system at τ in order for an observer to detect, at that random observation epoch τ, at 

least ni customers of the ith class in the system , where ni > 1. After that, i = 1,..., N for ni > 1. 

That's what the verification's primary finding is, for every I among 1 and N, the nth
i i

th class 

client should in any case be in the system at τ for an onlooker to recognize, at that arbitrary 
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perception age τ, essentially ni clients of the ith class in the system , where ni > 1. From that 

point onward, I = 1,..., N for ni > 1. 

                       𝐿1  ≥ 𝑛1, … , 𝐿𝑁  ≥ 𝑛𝑁 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑆1,𝑛1
>  𝜏 −  𝜏1,𝑛1,…,𝑆𝑁,𝑛𝑁

                   (3) 

Take note that assumptions A.1 and A.2 have been applied here. Consequently, 

𝑃{𝐿1  ≥ 𝑛1, … . , 𝐿𝑁  ≥ 𝑛𝑁} = 𝑃{𝑆1,𝑛1
>  𝜏 −  𝜏1,𝑛1

, … . , 𝑆𝑁,𝑛𝑁
>  𝜏 − 𝜏𝑁,𝑛𝑁

} 

Next, we make a decision based on the kind of consumer that accessed the system initially and 

received: 

𝑃{𝐿1  ≥ 𝑛1, … . , 𝐿𝑁  ≥ 𝑛𝑁}

=  ∑ 𝑃 { 𝜏 − 𝜏𝑖,𝑛𝑖
= 𝑚𝑎𝑥𝑗 ( 𝜏 − 𝜏𝑗,𝑛𝑗

) , 𝑆1,𝑛1
>  𝜏 − 𝜏1,𝑛1

, … . , 𝑆𝑁,𝑛𝑁

𝑁

𝑖=1

>  𝜏 − 𝜏𝑁,𝑛𝑁
} 

The event (𝜏 −  𝜏𝑖,𝑛𝑖
≥ 𝜏 − 𝜏𝑗,𝑛𝑗

) ∩ (𝑆𝑖,𝑛𝑖
>  𝜏 − 𝜏𝑖,𝑛𝑖

 implies that 𝑆𝑗,𝑛𝑗
>  𝜏 −  𝜏𝑗,𝑛𝑗

, 𝑗 ≠ 1, 

since the discipline is FIFO (Assumption A.2). Consequently, 

𝑃{𝐿1  ≥ 𝑛1, … . , 𝐿𝑁  ≥ 𝑛𝑁} =  ∑ 𝑃 { 𝜏 −  𝜏𝑖,𝑛𝑖
= 𝑚𝑎𝑥𝑗 ( 𝜏 −  𝜏𝑗,𝑛𝑗

) , 𝑆𝑖,𝑛𝑖
>  𝜏 −  𝜏𝑖,𝑛𝑖

}

𝑁

𝑖=1

 

 

Figure 1: A potential situation for observation when there are two customer classes 

Besides, Si,ni is conveyed as the fixed system time Si and 𝑆𝑖,𝑛𝑖
, 𝜏 −  𝜏𝑖,𝑛𝑖

 are independent due to 

Assumptions A.2 and A.3. Consequently, we condition on Si and get 
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𝑃{𝐿1  ≥ 𝑛1, … . , 𝐿𝑁  ≥ 𝑛𝑁}

=  ∑ ∫ 𝑷 {⋂ (𝝉 −  𝝉𝒊,𝒏𝒊
 ≥  𝝉 − 𝝉𝒋,𝒏𝒋

) , 𝝉 −  𝝉𝒊,𝒏𝒊
< 𝑡  

𝒋 ≠𝟏

}

∞

𝟎

 𝒅𝑭𝑺𝒊
(𝒕)

𝑁

𝑖=1

 

Conditioning on τ - τi,ni, where the notation is introduced 

𝐴𝑖,𝑛𝑖
(𝑥) = 𝑃{𝝉 −  𝝉𝒊,𝒏𝒊

 ≤ 𝒙} = 𝑃 {𝑇𝑖,1
∗ +  ∑ 𝑇𝑖,𝑘  ≤

𝑛𝑖

𝑘=2

 𝑥} 

also, we get for ni > 1, I = 1,..., N, using the freedom of τ - τj,nj for all j = 1,..., N (different 

arrival processes are autonomous). 

𝑃{𝐿1  ≥ 𝑛1, … . , 𝐿𝑁  ≥ 𝑛𝑁} =  ∑ ∫ ∫ ∏ 𝑃{𝜏 − 𝜏𝑖,𝑛𝑖
≤ 𝑥} 𝑑𝐴𝑖,𝑛𝑖

(𝑥)

𝑗≠1

 𝑑𝐹𝑆𝑖
(𝑡)

𝑡

0

∞

0

𝑁

𝑖=1

 

                                                        =  ∑ ∫ ∫ ∏ 𝐴𝑗,𝑛𝑗
𝑑𝐴𝑖,𝑛𝑖

(𝑥)𝑗≠1  𝑑𝐹𝑆𝑖
(𝑡)

𝑡

0

∞

0
𝑁
𝑖=1 .                    (4) 

Next, we examine the generic scenario in which the random observer arrives at the system and 

finds ni > 1 consumers from class i∉A but no customers from classes k ϵ A ∁ {1,..., N}. In a 

similar manner, using relation (3), we get 

⋂(𝐿𝑖  ≥ 𝑛𝑖

𝑖 ∄ 𝐴

), 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ⋂(𝑆𝑖,𝑛𝑖
>  𝜏 − 𝜏𝑖,𝑛𝑖

𝑖 ∄ 𝐴

) 

As a result, after deriving (4), we get: 

𝑃{⋂ (𝐿𝑖  ≥ 𝑛𝑖)𝑖 ∄ 𝐴 } =  ∑ ∫ ∫ ∏ 𝐴𝑗,𝑛𝑗
(𝑥)𝑑𝐴𝑖,𝑛𝑖

(𝑥)𝑗∄𝐴,𝑗≠1  𝑑𝐹𝑆𝑖
(𝑡)

𝑡

0

∞

0
𝑁
𝑖∄1 ,                      (5) 

for ni ≥ 1, i ∉A. 

Next, we repeatedly compute P(L1 = n1,..., LN = nN} based on (4) and (5) and the knowledge 

that for ni > 0 

𝑃{𝐿1 = 𝑛1,, … , 𝐿𝑖 = 𝑛𝑖 ,   𝐿𝑖+1  ≥ 𝑛𝑖+1, … , 𝐿𝑁  ≥ 𝑛𝑁}

= 𝑃 { ⋂ (𝐿𝑘 = 𝑛𝑘)

𝑘 ≤𝑖−1

, ⋂(𝐿𝑗  ≥ 𝑛𝑗)

𝑗≥1

}

−  𝑃 { ⋂ (𝐿𝑘 = 𝑛𝑘)

𝑘 ≤𝑖−1

, 𝐿𝑖  ≥ 𝑛𝑖 + 1, ⋂ (𝐿𝑗  ≥ 𝑛𝑗)

𝑗≥𝑖+1

} 

After a little algebra, we compute the generating functions and discover that: 
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𝐺𝐿1,….,𝐿𝑁
(𝑧1, … . . , 𝑧𝑁) = 1 +  ∑ ∫ ∫ ∏ 𝐾𝑗(𝑧𝑗, 𝑥)𝑑𝐾𝑖(𝑧𝑖, 𝑥)

 𝑗≠1

 𝑑𝐹𝑆𝑖
(𝑡)

𝑡

0

∞

0

𝑁

𝑖=1

 

Where 

𝐾𝑖(𝑧, 𝑡) = 𝑃{𝑇𝑖,1
∗  ≥ 𝑡} +  ∑ 𝑧𝑛

∞

𝑛=1

{𝑃 {𝑇𝑖,1
∗ + ∑ 𝑇𝑖,𝑛 > 𝑡

𝑛

𝑗=2

} −  𝑃 {𝑇𝑖,1
∗ +  ∑ 𝑇𝑖,𝑛 > 𝑡

𝑛+1

𝑗=2

}}

=  ∑ 𝑧𝑛

∞

𝑛=1

𝑃{𝑁𝑎𝑖

∗ (𝑡) = 𝑛} 

If we limit our focus to the quantity of clients in wait, equation (2) is proven via precisely the 

same set of reasoning. 

4. MULTICLASS DISTRIBUTIONAL LAWS ASYMPTOTIC FORMS 

Distributional Laws for Multiple Classes Asymptotic Forms explore in greater detail how 

systems that manage several traffic classes behave when they get closer to huge or infinite 

scales. Within the field of queueing theory, which examines systems in which entities wait for 

services, it is essential to comprehend how these systems behave over time or as they manage 

progressively greater workloads in order to make precise predictions and optimisations. A 

mathematical foundation for examining these systems' behaviour as they scale up is offered by 

asymptotic forms. 

Fundamentally, Multiclass Distributional Laws Asymptotic Forms investigate how, with 

increasing system length, the statistical characteristics of arrivals and service times change. 

These features include the distribution of service times for each class and the arrival times for 

various kinds of entities. These distributions show particular characteristics as the system 

grows larger, which result in asymptotic forms that characterise the system's behaviour at the 

limit. 

One of the main goals of researching Multiclass Distributional Laws Asymptotic Forms is to 

comprehend how systems behave over extended periods of time under different conditions. For 

instance, when the system gets bigger, researchers could be curious to see how the average wait 

times for various types of entities vary [9]. Analysts can forecast the behaviour of the system 

in the future or under various situations by obtaining asymptotic forms for these measurements. 

The application of Multiclass Distributional Laws Asymptotic Forms to optimisation issues is 

another significant feature of these forms. Engineers and designers can find ways to boost 

efficiency and better use resources by knowing how systems behave asymptotically. As the 

system scales up, for example, asymptotic forms may show that some classes of entities have 



 

301 | P a g e  
 

declining benefits in terms of wait time reduction, indicating that other components of the 

system should be optimised instead. 

Multiclass Distributional Laws Asymptotic Forms are useful in industries including computer 

networking, manufacturing, and telecommunications in addition to offering insights into 

system behaviour [10]. For instance, in telecom networks, operators can better plan capacity 

expansions and resource allocation by having a better understanding of how call arrival and 

service time distribution changes with network growth. 

All things considered, Multiclass Distributional Laws Asymptotic Forms provide an effective 

instrument for examining the behaviour of systems managing several traffic classes on a big 

scale. Researchers and practitioners can anticipate future performance, uncover areas for 

optimisation and improvement, and provide important insights into system behaviour by 

deriving asymptotic forms for key performance measures. 

The type of the distributional laws is fairly complex. This part expects to research their results 

as Li, Qi, Si, Wi ⟶∞. In the rest of this work, we will just glance at systems where the assistance 

times or the interarrival times are nonarithmetic. It is regularly perceived that there exists a 

characteristic boundary p, which addresses the traffic force in these systems, with upsides of 

ρ⟶1, Li, Qi, Si, Wi ⟶∞. The interarrival and administration time attributes of the particular 

system viable decide the traffic force. For example, in a ƩGI/G/1 queue, class I has an arrival 

pace of λi and a mean help season of E[Xi], where 𝐸[𝑋𝑖], 𝜌 =  ∑ 𝜆𝑖𝐸[𝑋𝑖]
𝑁
𝑖=1 . Subsequently, 

when we express that a system is encountering high traffic, we imply that ρ⟶1 and thus, Li, 

Qi, Si, Wi ⟶∞. Moreover, we'll utilize the documentation that g(x) ~ r(x) under heavy traffic 

to demonstrate that lim
𝜌−→1

𝑔(𝑥)

𝑟(𝑥)
= 1. 

We require the accompanying moderate outcome to get ready: 

Theorem 2: Asymptotically, as t ⟶∞ and z1 for a reestablishment interaction with rate An 

and square coefficient of variety c: 

𝐾(𝑧, 𝑡) =  ∑ 𝑧𝑛 𝑃{𝑁𝑎
∗(𝑡) = 𝑛} ~ 𝑒−𝑡𝑓(𝑥)

∞

𝑛=0

 

And 

𝐾0(𝑧, 𝑡) =  ∑ 𝑧𝑛 𝑃{𝑁𝑎(𝑡) = 𝑛} ~ 
𝑓(𝑧)

𝜆(1 − 𝑧)
𝑒−𝑡𝑓(𝑥)

∞

𝑛=0

 

Where, 

𝑓(𝑧) =  𝜆(1 − 𝑧) −
1

2
𝜆(1 − 𝑧)2(𝑐𝑎

2 − 1) 
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The Laplace change of a given irregular variable Y will be demonstrated with the image ϕY(s). 

Subsequently, the distributional laws have the accompanying asymptotic structure. 

Theorem 3: Under heavy traffic conditions, the accompanying asymptotic relations hold in a 

N-class queueing system that fulfills Presumptions A: 

                                                  𝐺𝐿𝑖
(𝑧) ~ 𝜑𝑠𝑖(𝑓𝑖(𝑧)), 𝑖 = 1, … . . , 𝑁                                        (6) 

                                             𝐺𝑄𝑖
(𝑧) ~ 𝜑𝑤𝑖(𝑓𝑖(𝑧)), 𝑖 = 1, … . . , 𝑁                                           (7) 

                                             𝐺𝐿𝑖
+(𝑧) ~ 

𝑓𝑖(𝑧)

𝜆𝑖(1−𝑧)
𝜑𝑠𝑖(𝑓𝑖(𝑧)), 𝑖 = 1, … . . , 𝑁                                (8) 

                                            𝐺𝑄𝑖
+(𝑧) ~ 

𝑓𝑖(𝑧)

𝜆𝑖(1−𝑧)
𝜑𝑤𝑖(𝑓𝑖(𝑧)), 𝑖 = 1, … . . , 𝑁                                (9) 

                                𝐺𝐿1,….,𝐿𝑁
(𝑧1, … . . , 𝑧𝑁)~ ∑

𝑓𝑖(𝑧𝑖)

∑ 𝑓𝑗(𝑧𝑗)
𝑁
𝑗=1

𝑁
𝑖=1 𝜑𝑠𝑖(∑ 𝑓𝑘(𝑧𝑘))𝑁

𝑘=1                       (10) 

with 

                       𝑓𝑖(𝑧) =  𝜆𝑖(1 − 𝑧) −  
1

2
𝜆𝑖(1 − 𝑧)2(𝑐𝑎𝑖

2 − 1) 𝑖 = 1, … . . , 𝑁                           (11) 

Proof: 

Theorem 3 is gotten by subbing the asymptotic type of every individual portion from Theorem 

2. 

The past hypothesis is useful on the grounds that it lays out an asymptotic connection between 

the change of the time spent in the system (queue) and the quantity of customers in the system 

(number). Because 𝐾(𝑧, 𝑡) = 𝐾0(𝑧, 𝑡) = 𝑒−𝜆𝑡(1−𝑧), it ought to be noticed that for Poisson 

arrivals, the relations of the past hypothesis are precise for all ρ. 

5. ƩGI/G/1 QUEUING SYSTEM UNDER FIFO 

A queuing system with numerous classes of arrivals (Σ) that each have their own independent 

and identically distributed (i.i.d.) service times (G) and follow a general (G) probability 

distribution is denoted by the notation "ƩGI/G/1." The "/1" indicates that the incoming entities 

can be served by a single server. When coupled with the discipline of "FIFO" (First-In-First-

Out), it implies that entities are served in the order that they arrive, without giving any class 

priority. 

Entities from different classes arrive at the system and join a shared queue in a Ʃ̩GI/G/1 queuing 

system operating under FIFO. Entities, regardless of class, arrive at the back of the line and are 

served by the same server in the order they came. The server starts serving the object at the 

head of the queue as soon as it becomes available and keeps going until the service is finished 
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[11]. The longest-waiting entity will be served first thanks to this procedure' adherence to the 

FIFO principle. 

Several factors affect the behaviour of a Ʃ̩GI/G/1 queuing system under FIFO, including as the 

server's capacity, the distribution of service times for each class, and the arrival rates of entities 

from each class. The length of the line varies as entities enter and exit the system, and 

depending on the arrival rates and service durations of other entities in the queue, entities may 

have to wait longer than others. 

Examining several measures, such as the average queue length, average waiting time, and 

server utilisation, is necessary to assess how well such a system performs. These metrics give 

information on how well and efficiently the system processes incoming items [12]. For 

instance, a low server utilisation may indicate that the system is underutilised and could benefit 

from extra capacity, whereas a high average waiting time may indicate that the system is unable 

to handle the incoming workload. 

For the purpose of building and administering systems in a variety of industries, such as 

computer networks, customer service centres, and telecommunications, it is imperative to 

comprehend how a Ʃ̩GI/G/1 queuing system behaves under FIFO. Engineers and management 

can make well-informed decisions to optimise resource allocation, improve service quality, and 

increase overall system efficiency by examining the system's performance under various 

conditions and scenarios. 

The distributional rules from the preceding section provide a comprehensive solution to 

the ̩ƩGI/G/1 under FIFO in heavy traffic, as we show in this section.  

Theorem 4: In a ̩ƩGI/G/1 system functioning in a FIFO scenario with high traffic 

                                      𝜑𝑤𝑖(𝑠) ~ (1 −  𝜌)
1+𝑐(𝑠)

1− 𝜌𝑖𝜑𝑥𝑖
∗(𝑓𝑖(𝑧))[

𝑠

𝜆𝑖(1−𝑓𝑖
−1(𝑎))

−1]

                               (12) 

And 

                                      𝐺𝑄𝑖
(𝑧) ~ (1 −  𝜌)

1+𝑐(𝑓𝑖(𝑧))

1− 𝜌𝑖𝜑𝑥𝑖
∗(𝑓𝑖(𝑧))[

𝑓𝑖(𝑥)

𝜆𝑖(1−𝑥)
−1]

                                       (13) 

Where 𝑐(𝑠) = 𝐷(𝑠)/(1 − 𝐷(𝑠))  𝑎𝑛𝑑 𝐷(𝑠) = ∑
𝜌𝑗𝜑𝑋𝑗

∗(𝑠)

1− 𝜌𝑖𝜑𝑥𝑖
∗(𝑠)[

𝑠

𝜆𝑖(1−𝑓𝑖
−1(𝑠))

−1]

𝑁
𝑗=1  

The quantity of clients in the queue's joint producing capability is given by: 

                      𝐺𝑄1,….,𝑄𝑁
(𝑍1, … . , 𝑍𝑁)~

(1−𝜌)[1+𝑐(𝑔(𝑧))]

𝑔(𝑧)
∑

𝑓𝑖(𝑧𝑖)

1−𝜌𝑖𝜑𝑥𝑖
∗(𝑔(𝑧))[

𝑔(𝑧)

𝜆𝑖(1−𝑓𝑖
−1(𝑔(𝑧)))

−1]

𝑁
𝑖=1        (14) 
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Where 𝑔(𝑧) =  ∑ 𝑓𝑘(𝑧𝑘)𝑁
𝑘=1  

Proof:  

For all I = 1,..., N, the distributional standards in Hypothesis 1 hold for both Li and Qi. For I = 

1,..., N, we acquire under heavy traffic from (7). 

𝐺𝑄𝑖
(𝑧𝑖)~ 𝜑𝑤𝑖(𝑓𝑖(𝑧𝑖)), 

𝐺𝑄𝑖
(𝑧𝑖) ~ (1 −  𝜌) +  ∑ 𝜌𝑗𝜑𝑤𝑗

∗(𝑓𝑖(𝑧𝑖))𝜑𝑥𝑗
∗(𝑓𝑖(𝑧𝑖))

𝑁

𝑗=1,𝑗≠1

+  𝜌𝑖 (1 −
1

2
(1 − 𝑧𝑖)(𝑐𝑎𝑖

2 − 1)) 𝜑𝑤𝑖(𝑓𝑖(𝑧𝑖))𝜑𝑥𝑖
∗(𝑓𝑖(𝑧𝑖))𝑖 = 1, … . , 𝑁 

After pairwise combining the preceding equations and assuming that i: zi = fi
-l(s), for each i, 

we obtain the following for i = 1,..., N: 

𝜑𝑤𝑖(𝑠) (1 − 𝜌𝑖𝜑𝑋𝑖
∗(𝑠)

𝑠

𝜆𝑖 (1 − 𝑓𝑖
−1(𝑠))

) − ∑ 𝜌𝑗𝜑𝑥𝑗
∗(𝑠)

𝑗≠1

~ 1 − 𝜌 

A closed form solution to the N x N linear system formed by the preceding equations can be 

obtained by adding and subtracting𝜌𝑖𝜑𝑥𝑖
∗(𝑠)𝜑𝑤𝑖(𝑠). Then, for each ϕWi(s), we may solve it 

as a function of∑ 𝜌𝑗𝜑𝑋𝑗
∗(𝑠)𝜑𝑊𝑗(𝑠)𝑗 , from which (12) is obtained. Furthermore, (13) follows 

from (7).  

Once the transforms of qwi (s) have been determined, we can utilize (10 to determine the joint 

change of (Q1,..., QN), which prompts (14). 

6. ƩGI/G/1 UNDER GENERAL SERVICE DISCIPLINES (PRIORITY 

DISCIPLINES) 

A queuing system with numerous classes of arrivals (Σ) that are independently and identically 

distributed (i.i.d.) with respect to general (G) probability distribution is represented by the 

notation "̩ƩGI/G/1". The "/1" means that only one server is available to handle incoming 

entities. When paired with "priority disciplines" or "general service disciplines," it describes 

how things are ranked in the system according to their class or other factors. 

When entities from various classes enter a Ʃ̩GI/G/1 queuing system under general service 

disciplines, they are given service priorities according to preset rules or criteria. These rules 

might give some classes more weight than others, or they might give entities more weight 

depending on other criteria like urgency, significance, or particular traits of the entities. 
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Priority-based scheduling is a popular kind of general service discipline in which entities with 

higher priority levels receive service before those with lower priority levels. Entities are 

normally served according to a FIFO (First-In-First-Out) system within each priority level, 

guaranteeing equity within each priority class. Customising service policies to meet the unique 

demands and specifications of the system and its users is made possible by priority disciplines. 

The prioritisation rules and criteria that are established for a Ʃ̩GI/G/1 queuing system under 

general service disciplines determine how the system will behave. When compared to entities 

with lower priorities, those with higher priorities may enjoy shorter wait times and faster 

service [13]. However, if the system is overloaded with higher-priority entities, this 

prioritisation may result in extended wait times or even famine for entities with lower priorities. 

Examining the average waiting time, the distribution of waiting times among priority classes, 

and the efficiency and fairness of the prioritisation scheme are some of the metrics that are used 

to analyse the functioning of such a system. One of the fundamental challenges in building and 

operating queuing systems under general service disciplines is striking a balance between the 

needs of various classes and preserving system performance and fairness. 

Designing systems that can efficiently prioritise and manage incoming entities according to 

their importance, urgency, or other criteria requires an understanding of how a Ʃ̩GI/G/1 

queuing system behaves under general service rules [14]. Through the implementation of 

suitable policies for prioritisation and the ongoing monitoring of system performance, 

operators may guarantee that the system satisfies user needs while upholding equitable and 

efficient service delivery. 

Only by using FIFO as the service discipline can the methods outlined in the previous section 

produce a comprehensive solution. It would be interesting to provide a framework to assess 

performance under arbitrary service disciplines since many of these emerge in real-world 

contexts (e.g., priority rules). Combining the findings from the preceding section with 

conservation rules formulated in the past ten years for multiclass queueing systems, our goal 

in this part is to lead an unequivocal examination of the exhibition of erratic arrangements 

under heavy traffic. 

6.1. Conservation laws  

The behaviour of certain quantities inside physical systems is described by conservation laws, 

which are fundamental physics principles. These rules state that despite possible systemic 

changes, some properties of a system always remain the same. They provide the basis of our 

knowledge of the physical universe since they are based on empirical observations and have 

undergone substantial experimental validation. 

The Conservation of Mass is one of the most well-known conservation laws. According to this 

law, an isolated system's total mass doesn't change over time [15]. To put it another way, mass 

can only be changed into new forms by physical or chemical processes; it cannot be generated 
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or destroyed. This fundamental constraint on matter's behaviour forms the basis of most of 

classical mechanics, chemistry, and thermodynamics. 

Comparably, the fundamental idea of energy conservation asserts that an isolated system's total 

energy stays constant over time. Although energy can take on different forms, such as thermal, 

electromagnetic, potential, or kinetic energy, the overall amount of energy in a closed system 

never changes. This fundamental law of mechanics, thermodynamics, and electromagnetism 

sheds light on how physical systems behave and exchange energy with one another. 

Linear momentum conservation is another significant conservation law. According to this law, 

if no outside forces intervene on an isolated system, its total linear momentum will remain 

constant over time. A straight-line motion is described by an object's linear momentum, which 

is the product of its mass and velocity. This idea is essential to comprehending propulsion 

mechanisms, collisions, and particle motion in classical mechanics. 

The Conservation of Angular Momentum exists in addition to linear momentum. According to 

this law, if there is no external torques acting on an isolated system, its total angular momentum 

will remain constant throughout time [16]. An object's moment of inertia and angular velocity 

are multiplied to obtain angular momentum, which is a measure of rotational motion. 

Comprehension rotational dynamics, such as how spinning objects or celestial bodies move, 

requires a comprehension of this concept. 

Last but not least, the conservation of charge, a basic electromagnetic concept, asserts that an 

isolated system's total electric charge stays constant over time. Like mass and energy, electric 

charge is a fundamental feature of matter that can only be transferred between objects rather 

than created. The behaviour of electrically charged particles is governed by this law, which is 

essential to understanding particle physics and electromagnetism. 

In general, conservation laws are essential to physics because they provide the underlying ideas 

that control how physical systems behave. Their applications are diverse and span many 

scientific and engineering domains. They offer significant understanding into the basic 

characteristics of matter, energy, and motion. Conservation laws are fundamental to 

understanding the basic principles that control the behaviour of the universe and are the 

foundation of many scientific hypotheses. 

Consider a ƩGI/G/1 system, where E = {1,2,...,N} is the arrangement of all classes and 2E is 

the arrangement of all subsets of E. All strategies that are non-anticipative and work preserving 

ought to be assembled into U. The presentation proportion of class i (i ϵ E) buyers under 

approach u is signified as xu
i for any arrangement u ϵ U and any class i. Performance measures 

that are expectations are the only ones we focus on. The performance vector under policy u is 

defined as 𝑋𝑢 ∶= (𝑥𝑖
𝑢)𝑖𝜖𝐸. Lastly, for every single permutation π of the N elements in E, we 

can compose xπi as the exhibition metric for class I under a flat out strategy decide that 
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positions client types from generally vital to least significant, with type π (N) being the most 

important and type π (1) being the least.  

Here is the main takeaway regarding systems that adhere to conservation laws:  

Theorem 5: Assume that the presentation vector x is dependent upon solid conservation laws; 

this is the fifth theorem. Let𝑃(𝑏) =  {𝑥𝜖𝑅𝑁 |  ∑ 𝑥𝑖
𝑢  ≥ 𝑏(𝐴), 𝐴 ⊂ 𝐸 𝑎𝑛𝑑 ∑ 𝑥𝑖

𝑢
𝑖∈𝐸 = 𝑏(𝐸)𝑖∈𝐴 }. 

Then 

i. All policies in U can be implemented with the performance vectors defined by P(b).  

ii. The outright priority leads r's exhibition vectors xπ act as the vertices of the 

polyhedron P(b). Here is the equation for the exhibition vector of an outright 

priority procedure, signified as π, where { π (1),..., π (N)} = E: 

𝑥𝜋(1)
𝜋 = 𝑏 ({𝜋(1)}) 

𝑥𝜋(2)
𝜋 = 𝑏 ({𝜋(1), 𝜋(2)}) − 𝑏 ({𝜋(1)}) 

. 

. 

. 

𝑥𝜋(𝑁)
𝜋 = 𝑏(𝐸) −  𝑏 ({𝜋(1), . … . , 𝜋(𝑁 − 1)}) 

iii. The set capability b(.) is supermodular, intending that for any sets A, B ⊂ E, b(A) 

+ b(B) ≤b(A ∪ B) + b(A ∩ B). This means that the polyhedron P(b) is a polymatroid.  

Hence, a performance vector xu in P(b) is the result of an arbitrarily placed policy in U. One 

may also determine the efficacy of priority rules by knowing the set function b(.). Not only 

that, but we can get the presentation under any non-anticipative and work saving approach by 

fittingly randomizing among outright priority strategies, therefore any policy u ϵ U can be 

acquired. Therefore, the attainable region can be described in full by knowing the set function 

b(.).  

Deplorably, the presentation of erratic approaches (and the set capabilities b(.)) are just known 

for systems with Poisson arrivals. Computing the set capability b(.) in heavy traffic for various 

systems EGI/G/1 that fulfill conservation laws is our commitment in this part. Although this 

work just addresses ƩGI/G/1, we do acknowledge that conservation laws are applicable to 

multiserver systems as well.  

We provide a summary of ƩGI/G/1 systems that adhere to conservation laws in Table 1 below. 

Keep in mind that we don't know the set function b(.) for the last three systems. The consistent 

state holding up season of class i is addressed by Wi, while Qi is the quantity of class I clients 

in the queue. We likewise demonstrate the traffic power for class i as ρi and the mean help time 

as E[Xi] what's more. 
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6.2. Assessment of the set function b(.) in heavy traffic 

A key component of queueing theory and stochastic analysis, especially when studying large-

scale systems where the workload approaches or surpasses the system's capacity, is the 

evaluation of the set function b(.) in heavy traffic. According to queueing theory, scenarios in 

which the system is highly loaded—that is, in which the rate at which entities arrive is either 

close to or greater than the system's processing capacity—are referred to as heavy traffic [17]. 

In a queueing system, the cumulative distribution function (PDF) of the so-called "excess 

service times" is commonly represented by the set function b(.). The extra time that an entity 

spends in the system above and beyond the typical service time because of congestion or delays 

in the queue is referred to as excess service time. By analysing how b(.) acts in high traffic, one 

can learn more about how the system functions under load and make predictions about 

performance measures like waiting times, queue lengths, and system stability. 

The behaviour of b(.) can display complicated dynamics in scenarios with high traffic that are 

different from those seen in scenarios with light or moderate traffic. Queuing delays worsen as 

the system gets closer to its capacity constraints, and entities could have to wait a long period 

to be served. Due to this, there is a non-linear relationship between the arrival rate and the 

levels of congestion that arise, which can cause phenomena like congestion collapse, in which 

the system is overloaded and performance quickly declines. 

Mathematical techniques such as asymptotic analysis, which studies the function's behaviour 

as the system load approaches its capacity limitations, are frequently used to analyse the set 

function b(.) with high traffic [18]. Certain asymptotic qualities, such as heavy-traffic limits—

where the system's behaviour converges to a well-defined limit as the load increases—may 

appear in heavy-traffic regimes. Comprehending these boundaries is essential for forecasting 

system efficiency and refining system architecture and resource distribution. 

Furthermore, evaluating b(.) in high-traffic situations offers important insights regarding the 

resilience and stability of the system. Researchers can find potential bottlenecks, performance 

constraints, and areas for improvement by examining how the set function responds to various 

load circumstances. Designing scalable and resilient systems that can manage heavy loads 

without sacrificing stability or performance requires knowledge of this information. 

A crucial component of queueing theory and stochastic analysis is the evaluation of the set 

function b(.) in heavy traffic, which sheds light on how systems behave under extreme stress. 

To guarantee resilience and efficiency in large-scale systems, researchers can forecast 

performance measures, spot possible problems, and optimise system design by examining how 

b(.) performs as the system gets closer to its capacity limitations. 

Here we survey the set capability b(.) under heavy traffic conditions for the systems recorded 

in Table 1. Accepting that we are restricted to work-saving and non-anticipative strategies that 

focus on the classes in set An over these classes in E - A, our deduction expresses that the set 
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capability b(A) is coldhearted toward changes in the control strategy. With FIFO as the service 

discipline, we may use distributional laws to assess performance metrics. Assuming FIFO 

discipline in A and E - A, we can estimate the set function b(.) using distributional rules. By 

formulating b(.) as a function of 𝜆𝑖, 𝑐𝑎𝑖

2 , 𝐸[𝑋𝑖], 𝐸[𝑋𝑖
2], and 𝜌𝑖 for all i, we may determine its 

closed form in high traffic. 

 

Table 1: Systems that are subject to robust conservation laws in steady-state conditions 

System Special Characteristics Performance Measure 

ƩM/G/1  N types of classes non-preventive ρiE[Wi] 

ƩGI/G/1  N types of classes preventive ρiE[Wi] 

ƩGI/G/1 N types with identical 

service 

non- preventive ρiE[Wi] 

ZGI/G/1  2 types of classes non- preventive ρiE[Wi] 

 

7. POLLING SYSTEMS 

A type of queueing system called a polling system is frequently used to simulate computer 

networks, manufacturing processes, and communication networks. Polling systems contain 

several queues, each served by a separate server or service station, in contrast to standard 

queueing systems where entities wait in a single queue for service. These servers follow a 

predetermined polling schedule, serving entities progressively from each queue in a cyclic 

fashion. 

Entities arrive to distinct queues in a polling system based on arrival processes, like Poisson 

arrivals. The order in which entities are served within a queue is determined by the service 

discipline specific to each queue. A server uses the polling schedule to determine which queue 

to serve when it becomes available [19]. After that, the server serves entities from the chosen 

queue until it is empty or a predefined amount of time has passed. 

Exhaustive polling is a popular kind of polling system in which the server visits each queue in 

a predetermined order, servicing all entities in each queue before going on to the next. Non-

exhaustive polling systems, on the other hand, might bypass queues that contain no waiting 

entities or use more complex scheduling algorithms to rank queues according to specific 

parameters, including waiting duration or queue length. 

Comparing polling methods to typical queueing systems reveals a number of advantages. 

Polling systems can lessen congestion and enhance system performance by spreading entities 

over several queues, particularly in situations when traffic is heterogeneous or service 

requirements are different. Additionally, since the server gives each queue its own attention, 

polling systems can offer more equitable resource allocation than centralised scheduling 

techniques. 
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Polling methods do, however, come with certain drawbacks and difficulties. It might be 

difficult to design the ideal polling schedule, particularly in systems with a lot of queues or 

changing traffic patterns. Furthermore, polling systems' cyclical design may result in delays 

and inefficiencies, especially if some queues see noticeably higher traffic volumes than others 

[20]. A continuous difficulty in polling system design and analysis is striking a balance between 

efficiency, fairness, and system complexity. 

All things considered, polling systems are a flexible and effective tool for modelling and 

analysing many kinds of systems, from manufacturing processes to communication networks. 

Polling systems provide a flexible and effective way to manage queues and allocate resources 

in dynamic and heterogeneous situations by using dedicated servers and cyclic polling 

schedules. Nonetheless, there are still many important areas for queueing theory and system 

design research and improvement, like creating the best polling algorithms and dealing with 

scalability and complexity issues. 

Presented here are an exhaustive service strategy, independent service time distributions, 

general renewal arrival streams, and the classical cyclic order polling system. In polling 

systems, the server follows a comprehensive cycle methodology and there are changeover 

times when it changes classes. Subsequently, polling systems are augmentations of the ƩGI/G/1 

queue. In this part, we utilize distributional laws broadly to decide the presentation of mean 

holding up times and process duration in heavy traffic. Segment 7.1 gives an outline of the 

model. Utilizing the initial two snapshots of an irregular variable related with the bustling time 

frame in a GI/G/1, we depict the anticipated exhibition measurements in Segment 7.2, where 

we break down the system. 

7.1. Model description  

A thorough help discipline is applied to a ƩGI/G/1 system where a solitary server serves N 

classes of clients in a cyclic request of 1,..., N, 1,... for each class. All in all, in the event that 

there are clients ready to be overhauled from class I - 1 when the server begins adjusting this 

class, then, at that point, the server processes all clients from this class until the system is 

unfilled. In the wake of experiencing an arbitrary deferral, it begins overhauling clients from 

class I. The operation can be seen as following a circular pattern with N queues. The server 

moves from queue i - 1 to queue i, incurring a travel delay di each time. Polling systems have 

been the common name for these systems for a long time. The arrival procedures and service 

time distributions are represented by the notation. The traffic intensity can be represented by 

the equation 𝜌 = ∑ 𝜌𝑖 < 1𝑁
𝑖=1 . Keep in mind that the changeover timings have no bearing on 

the stability state. 

7.2. Analysis of the polling system  

This inquiry is predicated on the following proposition.  
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Proposition 1: The following is the breakdown of the projected class i waiting time with heavy 

traffic in a ƩGI/G/1 polling system when the server is overhauling clients consistently and 

thoroughly: 

                                                      𝐸(𝑊𝑖)~𝐸(𝑊𝑖
𝐺𝐼/𝐺/1

) +
𝐸[(∆𝑖)2]

2𝐸[∆𝑖]
,                                        (15) 

Where E[Wi
GI/G/1] is the mean holding up time in a normal GI/G/1 queue 

Here, E[WiGI/G/1] is the average amount of time a typical GI/G/1 queue would take to 

complete its processing. 

Proof: 

Consider the following events Bi, which occurs when a random observer arrives at the arrival 

epoch, and (Bi)
C, which happens when the server either switches between classes or is 

overhauling class j≠i, meaning it is in the intervisit time of class I. We can confirm that 

𝑃{(𝐵𝑖)
𝑐} = 1 − 𝜌𝑖 by applying Little's regulation to the server, which gives us ρ (Bi) = ρi. 

Based on the current server status, we can deduce that: 

𝐸(𝑄𝑖) = 𝜌𝑖𝐸(𝑄𝑖|𝐵𝑖) + (1 − 𝜌𝑖)𝐸(𝑄𝑖|(𝐵𝑖)
𝑐). 

Furthermore, 

𝐸(𝑄𝑖|𝐵𝑖) = 𝐸 (𝑁𝑎𝑖
(𝑊𝑖 + 𝑋𝑖

∗)) ~𝜆𝑖(𝐸(𝑊𝑖) + 𝐸(𝑋𝑖
∗)) +

1

2
(𝑐𝑎𝑖

2 − 1), 

In this case, Xi
* represents the class i service time distribution's forward reccurence time. 

Furthermore, 

𝐸(𝑄𝑖|(𝐵𝑖)
𝑐) = 𝐸 (𝑁𝑎𝑖

∗ (Δ𝑖
∗)) = 𝜆𝑖𝐸(Δ𝑖

∗), 

The forward reccurence season of the visit time for class I is signified by Δ*
i. The clarification 

for the past relationship is that, taking into account the occasion (Bi)
C, the time that has elapsed 

starting from the beginning of the communication is Δ*
i when the irregular eyewitness shows 

up. Since the assistance policy is thorough, this implies that the Qi clients who are holding up 

in line when the eyewitness shows up probably shown up during Δ*
i. When we put all of the 

relevant relationships together, we get: 

                      𝐸[𝑄𝑖]~𝜌𝑖𝜆𝑖(𝐸[𝑊𝑖] + 𝐸[𝑋𝑖
∗]) + 𝜌𝑖

1

2
(𝑐𝑎𝑖

2 − 1) + (1 − 𝜌𝑖)𝜆𝑖𝐸[Δ𝑖
∗].                (16) 

Making use of the equation E[Qi] = λiE[Wi] 

𝐸[𝑊𝑖
𝐺𝐼/𝐺/1

]~
2𝜌𝑖

𝐸[𝑋𝑖
∗]+𝐸[𝑋𝑖](𝑐𝑎𝑖

2 −1)

2(1−𝜌𝑖)
, 
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We validate proposition 1. 

8. NUMERICAL RESULTS 

In this part, we mean to break down our proposed asymptotic technique for the accompanying 

systems mathematically: 

i. a multi-class GI/G/1 queue under FIFO; 

ii. a multi-class GI/G/1 queue under areas of strength for a discipline; and 

iii. a polling system with worldwide renewal arrivals. 

8.1. 3 classes in the GI/G/1 queue under FIFO 

We inspect a GI/G/1 queue with three client classes working under FIFO. There are E2 arrivals 

in classes 1 and 3, and E 4 arrivals in class 2. Each help has a dramatic pace of one. Table 2 

shows the exhibition of both our asymptotic strategy and the heavy traffic technique as a 

component of the traffic force.  

Table 2: Quantitative outcomes for the waiting period in a three-class FIFO GI/G/1 line 

ρ ρ1 ρ2 ρa Act. DL HT Eff. of DL Eff. of HT 

0.6 0.2 0.2 0.5 1.696 1.478 2.247 69.61% 183.77% 

0.7 0.2 0.3 0.5 1.022 1.797 2.585 79.55% 158.22% 

0.8 0.3 0.3 0.5 2.627 2.406 3.189 88.22% 137.02% 

0.9 0.3 0.4 0.5 3.759 3.410 4.335 89.28% 123.05% 

1.0 0.4 0.4 0.5 7.319 7.222 7.897 99.48% 111.19% 

 

The holding up time in a 3-class FIFO GI/G/1 queue as an element of traffic force (ρ) is 

determined utilizing two strategies: an asymptotic strategy (DL) and a heavy traffic technique 

(HT). The performance of these methods is thoroughly compared in table 2. In addition to 

particular intensities for each class (ρ1, ρ2) and the average traffic intensity (ρa), the table 

displays other traffic intensity levels (ρ). The waiting times predicted by the DL and HT 

approaches are compared with the actual waiting times (Act.). The efficiency of both 

approaches is also included in the table, denoted as Eff. of DL and Eff. of HT. The actual 

waiting time increases significantly when the traffic intensity goes from 0.6 to 1.0. When ρ is 

1.0, the DL method's efficiency approaches actual waiting times, improving as traffic 

intensities rise to 99.48%. On the other hand, the HT approach performs better at lower traffic 

intensities, but as ρ rises, its efficiency falls, reaching 111.19% at ρ equal to 1.0. This 

comparison shows that while the HT approach performs better at lower traffic intensities, the 

DL method becomes more dependable in high traffic situations. 

8.2. 2-classes in the GI/G/1 queue with absolute priority 

We look at a GI/G/1 system with two client classes and a flat out priority decide that awards 

class 1 non-preventive priority. 
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Table 3 provides a summary of the asymptotic approximation method's performance as a 

function of the traffic intensity vector {ρ1, ρ2}. This is to be expected given that the 

performance of our asymptotic technique improves with increasing waiting time. Moreover, 

we increment the hanging tight time for the underlying class and in this way work on the 

exhibition of our strategy in assessing the holding up season of that class by taking a solitary 

class GI/G/1 queue, with any arrival cycle as info, adding a second class, and forcing a non-

precautionary priority rule. Thus, as long as ρ1 is larger than or equal to 0.5, the method's 

accuracy in determining the low priority class's mean waiting time is exceptionally good, even 

in situations when this class has low traffic power. As a result, the second priority class's 

waiting time is high. 

Table 3: A two-tiered GI/G/1 queue's waiting time, expressed numerically 

ρ  High priority class Low priority class 

ρ1 DL Actual Efficiency ρ2 DL Actual Efficiency 

0.7  0.5  1.438  1.564  78.77%  0.3  2.272  2.433  90.61% 

0.8  0.5  1.522  1.647  82.02%  0.4  2.967  3.116  94.90% 

0.8  0.6  1.722  1.835  88.12%  0.3  3.634  3.798  96.11% 

0.9  0.6 1.822 1.936 89.56% 0.4 5.439 5.588 98.76% 

0.9  0.7  2.147  2.250  93.18%  0.3  7.064  7.214  99.60% 

0.9  0.5 1.606 1.729 84.62% 0.5 4.356 4.469 98.74% 

1.0 0.6  1.922  2.027  91.57%  0.5  10.856 10.945  99.12% 

1.0 0.7  2.272  2.373  94.54%  0.4  14.362  14.372  99.95% 

 

 

Figure 2: Effectiveness of Waiting Times in a Two-Class Priority GI/G/1 Line at Various 

Traffic Levels 

In a 2-class priority GI/G/1 queue, Table 3 presents a thorough comparison of the waiting times 

for high and low priority classes at different traffic intensities (ρ). The table shows the exact 

intensities for high (ρ1) and low (ρ2) priority classes for each level of traffic intensity, as well 
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as the actual waiting times, the efficiency percentages that correspond to them, and the 

expected waiting times based on the DL approach. The expected and real waiting times for 

both priority classes often rise as ρ rises from 0.7 to 1.0. The degree of efficiency exhibited by 

the DL technique varies, with larger efficiencies being recorded at higher traffic intensities, 

especially for the low priority class. For example, the DL approach achieves 99.95% efficiency 

for the low priority class at ρ = 1.0 and ρ2 = 0.4, showing a tight match between expected and 

actual waiting times. On the other hand, efficiencies for the high priority class show increasing 

accuracy of the DL approach under heavier traffic conditions, ranging from 78.77% at ρ = 0.7 

to 94.54% at ρ = 1.0. All things considered, the table shows how well the DL approach 

approximates waiting times, especially for the low priority class during periods of high traffic. 

8.3. 4-Classes in the absolute priority policy GI/G/1 queue 

We think about in this segment a GI/G/1 system with four classes of shoppers under a flat out 

priority non-preplanned rule to additionally confirm the heartiness of our methodology. Table 

4 summarises the characteristics of the various arrival processes. The help time distributions 

for all hubs are outstanding with unit rate (remember that for the solid conservation laws to 

hold for such a system, we expect that all classes have a similar help time distribution).  

Table 4: Information for the four priority GI/G/1 classes 

System  Class 1 arrivals Class 2 arrivals Class 3 arrivals Class 4 arrivals 

Distribution  Rate Distribution Rate Distribution Rate Distribution Rate 

A  Gamma 2 0.5 Gamma 3 0.3 Gamma 2 0.2 Gamma 3 0.2 

B  Gamma 2 0.3 Gamma 3 0.2 Gamma 2 0.1 Gamma 3 0.5 

 

In a 4-class priority GI/G/1 queue system, where each node shares an exponential service time 

distribution with a unit rate, Table 4 presents the features of the arrival process. The arrival 

rates and distributions for each class in the two systems, A and B, are shown in the table. The 

Gamma-2 distribution for Class 1 arrivals in System A is 0.5, the Gamma-3 distribution for 

Class 2 arrivals is 0.3, the Gamma-2 distribution for Class 3 arrivals is 0.2, and the Gamma-3 

distribution for Class 4 arrivals is 0.2. Class 1 arrivals in System B have a rate of 0.3, Class 2 

arrivals have a rate of 0.2, Class 3 arrivals have a rate of 0.1, and Class 4 arrivals have a rate 

of 0.5. All arrival classes in System B follow the same Gamma-2 distribution. The present 

extensive analysis demonstrates the variation in arrival processes among various classes and 

systems, emphasising the utilisation of distinct Gamma distributions and rates to represent 

arrival patterns in a priority queueing setting. 

Table 5 demonstrates the accuracy of our technique even at low traffic intensities. Furthermore, 

if all classes with priorities greater than or equal to class I have total traffic intensities greater 

than 0.5, then this is an accurate assessment of class I's real waiting time.  
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Table 5: Four-class GI/G/1 numerical findings under absolute priorities 

System Class 1  Class 2  Class 3 Class 4 

DL  Act. Efficiency DL  Act. Efficiency DL  Act. Efficiency DL  Act. Efficiency 

A  1.94  2.06  90.6%  3.10  3.38  90.7%  5.46  5.78  95.6%  9.49  9.96  99.9% 

B  1.71  1.86  83.4%  1.88  2.19  76.2%  2.31  2.57  85.5%  5.12  5.42  95.3% 

 

 

Figure 3: Comparing the Efficiency of Four-Class GI/G/1 Systems with Absolute Priorities 

Table 5 shows that our method works well even in low traffic intensity scenarios when 

calculating waiting times in a 4-class GI/G/1 queue with absolute priorities. The table shows a 

comparison of the two systems, A and B, for each class's actual and expected waiting times 

(Act.) and associated efficiency (Eff.). The efficiencies for Class 1 in System A range from 

90.6% to 99.9%, suggesting that the system yields extremely accurate predictions, particularly 

for higher priority classes. While System B's efficiency range from 76.2% for Class 2 to 95.3% 

for Class 4, it nevertheless produces estimates that are dependable despite being significantly 

less accurate than System A's. The findings validate that the technique performs especially well 

when all higher or equal priority classes have total traffic intensities greater than 0.5. Overall, 

the table validates the method's usefulness in various queueing scenarios by demonstrating how 

resilient it is in estimating waiting times over a range of traffic conditions and priority 

classifications. 

8.4. 10-Nodes polling system 

We examine a polling system featuring ten nodes operating under a comprehensive cycle 

policy. Table 6 shows our method's (DL) performance for five different systems. The service 

distribution is exponential with rate 1 for all nodes in all systems, and the delay di = 2 for all i.  

Table 6: 10-nodes polling system numerical results 
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System Total intensity of traffic DL mean waiting time Mean actual waiting time Efficiency 

A 0.42 17.98 18.45 99.3 % 

B 0.77 32.56 32.52 102.3 % 

C 0.92 71.08 70.69 103.6 % 

D 0.96 125.67 121.77 99.0 % 

E 0.87 66.69 65.61 103.8 % 

 

 

Figure 4: A Comparison of 10-Node Polling Systems' Efficaciousness 

The mean waiting times in a 10-node polling system for five distinct systems (A to E) with 

differing total traffic intensities are shown numerically in Table 6. The efficiency of the DL 

technique is calculated as the ratio of the actual to anticipated waiting times, and it is displayed 

in the table along with a comparison between the mean waiting times predicted by the DL 

method (DL mean waiting time) and the actual observed mean waiting times (Actual mean 

waiting time). System A has a high efficiency of 99.3%, demonstrating close agreement 

between expected and actual waiting times, with a total traffic intensity of 0.42. With a traffic 

intensity of 0.77, System B's efficiency is just above 100%, indicating that the DL technique 

may have underestimated it. With traffic intensities of 0.92 and 0.87, respectively, Systems C 

and E show efficiencies above 103%, suggesting that in these scenarios the DL technique tends 

to underestimate the real waiting times. With the highest traffic intensity of 0.96, System D 

exhibits an efficiency of 99.0%, demonstrating the DL method's dependability even under high 

load circumstances. Overall, the data shows that, with efficiency ranging from 99.0% to 

103.8%, the DL technique yields estimates of mean waiting times that are typically accurate 

over a range of traffic intensities.  

Interestingly, even at relatively tiny overall traffic intensities (0.5), the asymptotic technique 

performs remarkably well. Additionally, we can observe from a comparison of our results for 

other queueing systems that our strategy performs better in polling systems as a function of 

traffic intensity than it does in any other system. It is noticeable that systems B, C, and D are 

very asymmetrical, while systems A and E are symmetrical. However, the method's 

performance remains unaffected in every scenario. 
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8.5. A 2-Node polling system 

We examine a 2-node polling system to verify the resilience of our approach. Only the traffic 

intensity of both queues is shown as a function of our method's performance in Table 7. Once 

again, take note of how effectively the suggested approach works with moderate traffic, that is, 

when ρ = 0.6.  

Table 7: Exponential service and 2-node polling system numerical results 

Traffic intensity Asymptotic mean 

waiting time 

Actual mean waiting time Efficiency 

ρ ρ1 ρ2 

0.6 0.5 0.2 3.990 4.275 93.4 % 

0.7 0.5 0.3 4.932 5.301 93.6 % 

0.7 0.3 0.5 4.873 5.210 94.2 % 

0.7 0.4 0.4 4.972 5.429 91.9 % 

0.8 0.5 0.4 6.292   6.806 93.3 % 

0.8 0.7 0.2 5.925 5.738 106.3 % 

0.8 0.4 0.5 6.256 6.752 93.6 % 

0.9 0.5 0.5 8.913 9.632 93.8 % 

0.9 0.3 0.7 8.811 8.472 106.7 % 

0.9 0.7 0.3 8.766 9.040 105.7 % 

1.0 0.4 0.7 16.967 16.835 103.0 % 

1.0 0.7 0.4 17.293 17.274 102.3 % 

 

Table 7 presents the results of our approach to mean waiting time prediction in a 2-node polling 

system with exponential service when only the traffic intensity of both queues is considered. 

The data in the table shows that the approach is robust even under moderate traffic situations, 

as shown by scenarios with ρ = 0.6. Its consistent accuracy is revealed across different 

combinations of traffic intensity. With efficiencies ranging from 91.9% to 94.2% at ρ = 0.6, 

the projected asymptotic mean waiting times nearly match the observed mean waiting times. 

This indicates that the approach can produce accurate estimates even at lower traffic intensities. 

The approach performs wonderfully up to ρ = 1.0 traffic intensity, retaining efficiency above 

100% in certain scenarios and showing a modest underestimating of waiting times. All things 

considered, the table shows how well our approach works to forecast average wait times in a 

variety of traffic intensity scenarios, indicating that it is a good fit for real-world queueing 

system analysis applications. 

9. CONCLUSION  

This study offers a novel asymptotic method for analysing multiclass queueing systems that 

are subjected to high traffic volumes. Our study produces a number of important conclusions 

on the effectiveness and usefulness of our approach. First, we note that our asymptotic method 

performs better when waiting times rise, showing superiority in situations when greater waiting 
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periods are expected. Notably, our approach performs exceptionally well in priority systems 

and delivers outstanding accuracy in polling systems, where delays greatly compound waiting 

times. Our approach yields good results even in systems operating at moderate traffic levels 

and under FIFO discipline. Interestingly, we see that the system difficulty has an inverse 

relationship with our method's performance, indicating that our method may be used to a 

variety of queuing scenarios. Second, we discover that our method achieves exactness for 

Poisson arrivals, suggesting that our method performs better for arrival processes that are closer 

to Poisson distributions. These findings highlight how reliable and effective our asymptotic 

method is for analysing multiclass queueing systems in scenarios with high traffic. Going 

forward, our research offers useful insights for managing and designing real-world queueing 

systems optimally, presenting workable strategies to improve system efficiency and 

performance. These results provide a thorough understanding of the dynamics of multiclass 

queueing with heavy traffic and have applications in the design and optimisation of data 

transmission and communication networks. All things considered, this work improves 

theoretical models and offers helpful recommendations for operating multiclass queueing 

systems in the actual world. 
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